

A Statistical Method for Benchmarking Nuclear Reactor Plant Models, for Use in Simulators, Using the Automated Code Assessment Program

> John McCloskey Richard Smith IRUG October 6-7, 2016

The Naval Nuclear Laboratory is operated for the U.S. Department of Energy and the U.S. Department of the Navy by Bechtel Marine Propulsion Corporation, a wholly owned subsidiary of Bechtel National, Inc.

Outline

- Motivation
- Overview of ACAP
- Description of method
- Demonstration of method using examples from LOFT L2-5 and RELAP5-3D data comparisons

Conventional Validation Methods

- U. S. Nuclear Regulatory Commission (NRC) defines a set of terms for level of agreement: Excellent, Reasonable, Minimal, Insufficient
 - Requires subjectivity
 - Time consuming
- Experimental Uncertainty
 - Can be difficult to determine an uncertainty

ACAP Overview

- ACAP-Automated Code Assessment Program
 - Developed by Pennsylvania State University under contract by U.S. NRC
 - Runs with a graphical user interface or in batch mode, also included in the Symbolic Nuclear Analysis Program (SNAP)
- Compares nuclear reactor systems code with experimental measurements or a qualified benchmark code
- 0-D, steady state, or transient data
- Data resampling
- Contains 16 statistical metrics
- Figure of Merit (FOM): Statistical level of agreement nondimensionalized from 0 to 1

Proposed Method

- Applicable to transient data
- Applicable to nuclear operator training simulator applications
- American Nuclear Society ANSI/ANS-3.5-2009-Nuclear Power Plant Simulators for use in Operator Training and Examination
 - For normal transient evolutions and malfunctions it is required that "any observable change in simulation parameters corresponds in <u>direction</u> to the change expected from actual or best estimate response"
- Quantitative method
- Easy to document
- Automated

ACAP Metrics

- Four metrics are chosen for transient simulator applications
 - Conservative
 - Emphasis on trend errors
 - Automated
 - Avoid scaling, filtering, other inputs

Metrics							
Mean Error	Index of Agreement						
Standard Deviation of Error	Cross-Correlation Coefficient						
Mean Square Error	L ₂ Norm of Standard Linear Regression						
Mean Error Magnitude	L ₂ Norm of Standard Linear Regression Constrained Through Origin						
Mean Relative Error	L ₂ Norm of Difference Between Predicted and Perfect Agreement						
Mean Fractional Error	Percent Validated						
Systematic Mean Square Error	D'Auria FFT						
Unsystematic Mean Square Error	Continuous Wavelet Transform						

NAVAL NUCLEAR

Percent Validated (PV)

Experimental Uncertainty

- ANS-3.5 Steady State Requirements:
 - "It shall be demonstrated that the following PWR parameters match reference data within ___% of the reference unit instrument loop range."

1% of Range	2% of Range	10% of Range
Temperature (T)-average	Steam generator feed flow	All other
T-hot	Reactor coolant system flow	parameters
T-cold	Steam generator level	
Core MWt	Letdown flow	
Power range nuclear instrumentation readings	Charging flow	
Reactor coolant system pressure	Steam flow	
Steam generator pressure	Turbine first stage pressure	
Pressurizer level	MWE	

Mean Error (ME)

Standard Deviation of Error (σ)

 $\text{FOM}_{\sigma} \equiv \frac{1}{|\sigma^*| + 1}$

RELAP: "Developmental Assessment of RELAP5-3D Version 2.9.3+" INL/EXT-09-15965

Experimental: Loss-Of-Fluid-Test (LOFT) Facility Large Break Loss-Of-Coolant Experiment L2-5

Cross-Correlation Coefficient (ρ_{xy})

$$\rho_{xy} \equiv \frac{\sum_{i=1}^{N} (O_i - \overline{O})(P_i - \overline{P})}{\sqrt{\left[\sum_{i=1}^{N} (O_i - \overline{O})^2\right]\left[\sum_{i=1}^{N} (P_i - \overline{P})^2\right]}}_{P \rightarrow \text{Computed Data}}$$

$$\overline{P} \rightarrow \text{Average of Computed Data}$$

$$\overline{P} \rightarrow \text{Average of Benchmark Data}$$

 $\text{FOM}_{\rho_{XY}} \equiv \max(\rho_{XY}, 0)$

2.9.3+" INL/EXT-09-15965 Experimental: Loss-Of-Fluid-Test (LOFT) Facility Large Break

Loss-Of-Coolant Experiment L2-5

Weightings for Nuclear Operator Training Simulator Applications

$$\text{FOM}_{\text{total}} \equiv \frac{1}{3} \text{FOM}_{\text{PV}} + \frac{1}{3} \text{FOM}_{\rho_{\text{xy}}} + \frac{1}{6} \text{FOM}_{\sigma} + \frac{1}{6} \text{FOM}_{\text{ME}}$$

Method	Description	Trend Errors	Magnitude Errors	No Inputs Required	Independent of Benchmarking Range	Translationally Invariant	Applicable to Steady State
Percent Validated (PV)	Percentage that data is within tolerance band	X	X		X	X	X
Cross-Correlation Coefficient (ρ_{xy})	How often data are both above or both below their respective mean	X		X	x	X	
Standard Deviation of Error (σ)	Difference in trend after removing mean error	X		X		X	
Mean Error (ME)	Difference in means		X	X		X	

FOM Threshold

- Used as an aid to highlight potential problems
- Threshold depends on type of test
- FOMs are not used for pass/fail decisions

FOM Threshold	Type of Test
0.7	Loss of Coolant Accidents and Steam Line Ruptures
0.9	Operational Transients and Non-Leak Accidents
0.99	Computer Hardware Changes, Model Changes*, Tool Upgrades, and Operating System Upgrades

*Model changes not intended to change the benchmark results

FOM Summary

- Table can be autogenerated
- Can easily identify parameters most likely to exhibit a discrepancy
- Can identify patterns
- Table can be easily updated after model changes and compared with previous results
- Easy to document results in a report

Comparison Between LOFT Loss of Coolant Experiment L2-5 Data with RELAP5-3D Predictions							
Parameter	Mean Error	Standard Deviation of Error	Cross- Correlation Coefficient	Percent Validated	Combined FOM		
Reactor Pressure	0.9953	0.9888	0.9977	0.8180	0.9359		
Steam Generator Pressure	0.9407	0.9478	0.9605	0.9655	0.9567		
Pressurizer Liquid Level	0.9896	0.9872	0.9977	0.9587	0.9816		
Mass Flow Rate Cold Leg Broken Loop	0.9969	0.9582	0.9442	0.5904	0.8374		
Mass Flow Rate Hot Leg Broken Loop	0.9888	0.9624	0.9053	0.9083	0.9297		
Mass Flow Rate Hot Leg Intact Loop	0.9927	0.9574	0.5326	0.7151	0.7409		
Mass Flow Rate Cold Leg Intact Loop	0.9552	0.9339	0.8037	0.4130	0.7204		
Primary Coolant Pump Speed	0.7900	0.8745	0.7428	0.1880	0.5877		
Density Cold Leg Broken Loop	0.9890	0.8648	0.6791	0.8523	0.8194		
Density Hot Leg Broken Loop	0.9657	0.8975	0.6887	0.6836	0.7679		
Density Hot Leg Intact Loop	0.8844	0.8492	0.3824	0.5425	0.5972		
Density Cold Leg Intact loop	0.9880	0.7836	0.3261	0.2614	0.4911		
Accumulator Liquid Level	0.9983	0.9877	0.9996	1.0000	0.9975		
High-Pressure Injection System Flow	0.9906	0.9269	0.9153	0.9596	0.9445		
Low-Pressure Injection System Flow	0.9856	0.9203	0.9785	0.9952	0.9756		
Primary Coolant Temperature	0.9723	0.9622	0.9941	0.3853	0.7822		
Primary Coolant Temperature	0.9304	0.9296	0.9844	0.3781	0.7642		
Fuel Centerline Temperature	0.9410	0.9059	0.9075	0.8742	0.9017		
Fuel Cladding Temperature	0.8578	0.7986	0.7857	0.7869	0.8002		
Fuel Cladding Temperature	0.8199	0.7720	0.7235	0.6440	0.7211		
Fuel Cladding Temperature	0.8089	0.7766	0.7609	0.5616	0.7051		
Fuel Cladding Temperature	0.8641	0.8359	0.9049	0.5763	0.7771		
Fuel Cladding Temperature	0.8467	0.8317	0.8862	0.5230	0.7495		
Fuel Cladding Temperature	0.9478	0.9151	0.9808	0.9064	0.9396		
Fuel Cladding Temperature	0.9424	0.8575	0.8912	0.8468	0.8794		
Fuel Cladding Temperature	0.9793	0.8284	0.7780	0.7270	0.8030		
Fuel Cladding Temperature	0.8976	0.8367	0.8581	0.8365	0.8539		
Fuel Cladding Temperature	0.9124	0.8561	0.8863	0.9052	0.8919		
Fuel Cladding Temperature	0.8847	0.8558	0.8282	0.7956	0.8314		
Fuel Cladding Temperature	0.8958	0.8735	0.8528	0 9391	0.8922		

NAVAL NUCLEAR

RELAP: "Developmental Assessment of RELAP5-3D Version 2.9.3+" INL/ EXT-09-15965

Experimental: Loss-Of-Fluid-Test (LOFT) Facility Large Break Loss-Of-Coolant Experiment L2-5

Samples-High FOMs

RELAP: "Developmental Assessment of RELAP5-3D Version 2.9.3+" INL/ EXT-09-15965

Experimental: Loss-Of-Fluid-Test (LOFT) Facility Large Break Loss-Of-Coolant Experiment L2-5

Samples-Low FOMs

	Percent Validated	0.523					Percent Valio	lated	0.543
	Mean Error	0.847					Mean Error		0.884
	Standard Deviation Error	0.832					Standard De	viation Error	0.849
	Cross-Correlation Coefficient	0.886					Cross-Correl	ation Coefficie	nt 0.382
	Combined Figure of Merit	0.750					Combined Fi	gure of Merit	0.597
Cladding Temperature(K)		60	- RELAP - Experimental - Uncertainty -	Average Density(kg/m^3)	300 300 400 200 0 - 200 0 - 200 0 - - - - - - - - - - - - -	20			RELAP Experimental Uncertainty
	Time (s)						Time	e (s)	

RELAP: "Developmental Assessment of RELAP5-3D Version 2.9.3+" INL/ EXT-09-15965

Experimental: Loss-Of-Fluid-Test (LOFT) Facility Large Break Loss-Of-Coolant Experiment L2-5

Samples-Data Noise

Percent Validated	0.966
Mean Error	0.941
Standard Deviation Error	0.948
Cross-Correlation Coefficient	0.961
Combined Figure of Merit	0.957

		6	
	5.	9	- RELAP - Experimental - Uncertainty
ure(MPa)	5.	8	
Press	5.	7	
	5.	6	
	5.	5∎ C	20 40 60 80 100
			Time (s)

Percent Validated	0.715
Mean Error	0.993
Standard Deviation Error	0.957
Cross-Correlation Coefficient	0.533
Combined Figure of Merit	0.741

Conclusions

- ACAP was used to aid in the validation of nuclear reactor plant models
 - Quantitative
 - Automated
 - Conservative
 - <u>Not</u> used for pass or fail decisions
- Four metrics chosen for transient simulator applications
 - Percent Validated
 - Mean Error
 - Standard Deviation Error
 - Cross-Correlation Coefficient
- Examples shown comparing LOFT L2-5 experimental data with a RELAP5-3D model.

References

- Bayless, Paul D. and Divine, Janice M. "Experiment Data Report for LOFT Large Break Loss-Of-Coolant Experiment L2-5", NUREG/CR-2826, EGG-2210, August 1982.
- Bayless, Paul D., Anderson, Nolan A., Davis, Cliff B., et. al., "Developmental Assessment of RELAP5-3D Version 2.9.3+", INL/EXT-09-15965, ISL-NSAO-TR-09-09, Revision 3, December 2009.
- Damerell, P. S. and Simons, J. W., "2D/3D Program Work Summary Report," NUREG/IA-0126, GRS-100, MPR-1345, June 1993.
- Kunz, Robert F., Kasmala, Gerald F., and Mahaffy, John H., "Automated Code Assessment Program: Technique Selection and Mathematical Prescription", Task Order #3 Letter Report 3, April 1998.
- Kunz, R. F., Kasmala, G. F., Murray, C. J., and Mahaffy, J. H., "Application of Data Analysis Techniques to Nuclear Reactor Systems Code Accuracy Assessment", Presented at the IAEA Conference on Experimental Tests and Qualification of Analytical Methods to Address Thermalhydraulic Phenomena in Advanced Water Cooled Reactors, Villigen, Switzerland, 1998.
- "Nuclear Power Plant Simulators for Use in Operator Training and Examination", ANSI/ANS-3.5-2009, American Nuclear Society, September 2009.

