Application of RELAP5-3D[©] for liquid metal reactor safety

International RELAP5-3D Users Group (IRUG) Seminar 2021 September 16-17

Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica (DIAEE) Nuclear area <u>Fabio Giannetti</u> Vincenzo Narcisi Cristiano Ciurluini Gianfranco Caruso

OUTLINE and INTRO

Goal of this activity is to understanding of relevant thermal-hydraulic

phenomena that characterize LMFR safety aspects using RELAP5-3D[©]

for these applications:

- CIRCE-ICE and CIRCE-HERO LOF experiment for thermal stratification
- NACIE (natural circulation, UQ)
- PHÉNIX EoL Dyssimmetric test (benchmark to evaluate asymmetric effects)
- PERSEO benchmark on passive systems (NEA) (pool boiling and cond.)
- ALFRED with passive-controlled Isolation Condenser (two-phase natural circulation with non-condensable)
- \circ FFTF TH-NK ULOF transient with physical model of GEM

CIRCE-ICE – Transient simulation

<u>GEC</u>

- Good evaluation of primary MFR
- Satisfactory prediction of FPS inlet T (discrepancies within error band)
- Model #1 provides prediction of the average FPS outlet T
- Model #2 allows more detailed resolution at the FPS outlet
- Good prediction of **heat losses** and of heat exchange through the HX
- Discrepancies in the evaluation of DHR outlet T by Model #1

<u>NC</u>

- Satisfactory evaluation of the MFR after the transition event
- Good prediction of the FPS T drop after transition
- Model #1 slightly underestimates the average FPS outlet T
- Good simulation of the heat losses towards the main pool
- Satisfactory evaluation of the DHR
 operation

660

640

Temperature (K) 009 082 082

560

540

0

2

4

DHR dT – LBE side

 $\times 10^4$

10

T-SG-01,02,03

── T-SG-13/18 -▲ - R5-3D: model #1

8

6

Time (s)

CIRCE-ICE – Transient simulation

ENE

CIRCE-HERO

Main differences from ICE

- Double Wall Bayonet Tube Steam
 Generator (DWBT SG) replaces the HX
- DHR system is removed
- DHR function is accomplished by the DWBT SG, reducing secondary flow rate
- Lager volume of the separator
- FPS thermally insulated with stagnant LBE

CIRCE-HERO – Transient simulation

$\begin{array}{c} 700 \\ \hline \\ 700 \\ \hline \\ 6\% \\ 0.8 \\ \hline \\ 0.3 \\ 680 \\ \hline \\ \\ 680 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	780
7.6% ¥ 720 0.8 a 720 a b a b b c b c b c c c c c c c c c c	760
	740
	740
	740
660	- 720 £
1.4 0 1 2 3 4 5 6 7 Elevation (m)	erature
3	- 700 ^đ ugi 1907 –
0058 8.4 Full Power conditions	
	- 680
2.6	660
	640
	040
	- 66C 64C
-2.0	

NACIE facility – test 201 as example for UQ

- NACIE is a loop-type facility cooled by LBE, designed an realized in the ENEA Brasimone Research Centre
- The test 201 was reproduced using R5-3D coupled with RAVEN for the propagation of the uncertainty

Mass Flow Rate (kg/s)

0

-Tout: 5%

- Tout: 95%

10000 12000

NACIE facility – test 201 as example for UQ

Samplig parameters:	T _{LBE}	Power	FW	mass f	low rate	T _{FW}	Argon inj	jection Powder Conductivity
(using normal distrib.)	±1.5 K	±3%	±10	%		±1.5 I	Κ –	±10%
	FOM			Experin	nental data	Simulat	ion results	
				Mean	σ^2	Mean	σ^2	
Perturbation	LBE Mass flo	ow rate	kg/s	3.7	3.50E-03	3.7	1.70E-04	
obtained in	FPS inlet T		K	488.6	0.25	488.5	11.43	
output (93	FPS outlet T	1	К	506.7	0.25	505.7	11.85	
run)	HX inlet T		Κ	504.8	0.25	504.4	11.49	Quantitative comparison beetween
	HX outlet T		К	490.2	0.25	488.9	11.56	experiment and numerical result using
Mass Simulation Experiment 0.4 0.2 0.2 0.3.5 3.6	flow rate - C	3.8	3.9	35 30 25 20 20 15 15 10 4 3.5	Mass Simulation Experimen	s flow rate	- PDF	 difference: A good agreement is observed for th LBE mass flow rate, where the CDF area difference is lower than 0.5 kg/s the average difference between the CDF(sim) and the CDF(exp) for the LBE temperature is 2.5 K.
Mass	flow rate (kg	/s)			Mas	s flow rate	(kg/s)	

PHÉNIX – EoL Dyssimmetric test (H2020 SESAME)

Pool thermal stratification and mixing convection Asymmetric phenomena within large pool

Asymmetric boundary conditions tric

- Main vessel: 11.8 m of diameter containing about 800 ton of Na
- Double-enveloped vessel: it prevents any possible sodium leaks
- Primary containment vessel
- Reactor pit: equipped with final emergency system ensuring the decay heat removal in the event of a loss of normal cooling system
- Primary vessel: physical separation between the hot and cold pools
- **Strongback**: below the core, it redirects the 10% of the Na mass flow rate to the **vessel cooling system**
- Diagrid: it achieves the connection between the pumps and the core
- **Primary pumps (PP)**: 3 PPs ensure the primary coolant circulation
- Intermediate heat exchanger (IHX): 6 IHX guarantee the thermal power removal. From 1993, only 4 IHX was in operation

PHÉNIX – Thermal-hydraulic model

- **MULTID component**: Diagrid, Core bypass, Hot and Cold pool
- 1D model:
 - Inner and outer core assembly per assembly
 - Blanket and shielding zones collapsed in 36 and 24 equivalent pipes
 - 3 primary pumps
 - o 6 IHXs modelled separately
- Sliced approach
- Relevant elevations maintained
- HTC correlations:
 - o Seban-Shimazaki: non-bundle
 - Westinghouse: reactor core
 - Graber-Rieger*: IHXs (through fouling factors)
- Cheng-Todreas correlation for pressure drop evaluation in rod bundle

Parameter	Number of components
Hydrodynamic volumes	6940
Hydrodynamic junctions	11840
Heat structure mesh points	40170
Lines of code	22428

To DIAGRID

PHÉNIX – Steady state results

Quantity	Unit	Experiment al data	Simulation result	Error	82
IHX secondary	К	594	594	0 K	10
side inlet T	kalo	0.47	0.47	00/	
INX Secondary	ky/5	347	347	0%	8 78
PP total MFR	kg/s	2209	2211	1%	PLUG
IHX secondary	ĸ	784	787	+3 K	6 - 76
side outlet T					
Core inlet T	K	658	660	+2 K	
Core outlet T	K	807	806	-1 K	
IHX primary side	K	793	792	-1 K	
inlet T					2
IHX primary side	K	658	660	+2 K	
outlet T					
Core MFR	kg/s	1988	1992	0%	0 - 68
VCS MFR	kg/s	221	219	0%	
IHX primary side	kg/s	497	498	-1%	66
MFR					-2
					-5 -4 -3 -2 -1 0 1 2 3 4 5 x(m)

Time	Action	000	Power	remov	ved		700	IH	X-1B out	let T
(s) 0	Secondary pump trip (on loop 1): speed reduced from 700 to 100 rpm in about 13 s	150			- L1:E > - L3:E > - L3:E > - L3:R!	kp. Data 5-3D kp. Data 5-3D	760 760 \$\vec{740}			Exp. Data
5	Automatic shutdown: insertion of the control rods (1.4 mm/s) for 45 s Turbine trip Secondary pump speed reduced (on loop 3) from 700 to 110 rpm in about 60 s	Home Home Home Home Home Home Home Home	0				027 teratrice 007 beratrice 0080 0090			
48	SCRAM	0			- 0		640			
1800	End of dissymmetric test	0	50 т	100 ime (s)	150	200	0	50	0 100 Time (s	10 1500
			I	iiiie (5)		Time	e0s		Time (S)
	Secondary circuit n°1	12 10	IHX 1B	IHX 2A	PP2	HX 2B	IHX 3A	3 IHX 3 3B	IHX 1A	PP1 750
	DOTE	6 (E) × 4 2							x = x	Temperature (K)
	PP3 IHX-30 Secondary	0 -2 -4	theta 1 theta	2 theta 3	theta 4 the	eta 5 theta 6	theta 7 theta	a 8 theta 9 t	heta 10 theta 11	theta 12
	CIFCUIL N'S	()	5	10	15 × (20 m)	25	5 30	600

Time	Action	Action Power removed							IHX-1B outlet T			
(s) 0	Secondary pump trip (on loop 1): speed reduced from 700 to 100 rpm in about 13 s	150				:Exp. Data :R5-3D :Exp. Data :R5-3D	780 760 ♀ ⁷⁴⁰			Exp. Data		
5	Automatic shutdown: insertion of the control rods (1.4 mm/s) for 45 s Turbine trip Secondary pump speed reduced (on loop 3) from 700 to 110 rpm in about 60 s	MM) 100) 720 Temperature 680 660					
48	SCRAM	0				2015 UNIVE	640					
1800	End of dissymmetric test	0	50	100 Time (s)	150) 200	0	500	1000 Time (s)	1500		
	Secondary circuit n°1 IHX-1A INX-3B	12 10 8 (E) 7 4 2 0	IHX 1B		PP2	IHX 2B	≥ 30 s	3 IHX 3B	IHX PP- 1A	800 1 750 700 Umperature (K) 650		
	Secondary circuit n°3	-2 -4	theta 1 t 0	heta 2 theta 3	3 theta 4 10	theta 5 theta 6	theta 7 theta 20 (m)	18 theta 9 the	eta 10 theta 11 theta 30	600		

PHÉNIX – Transient simulation (benchmark)

Boil-off

OECD/NEA/CSNI WGAMA

State of art on reliability of thermal-hydraulic passive systems (SOAR-

RPS) - PERSEO benchmark on passive systems

• Evaluation of the IC performance

Pressure Vessel:

- it supplies steam at fixed conditions
- a dedicated valve controlled the level within the component

Isolation Condenser:

- 120 vertical tubes
- Pipelines:
 - $\circ~$ connecting the PV and the IC
- HX Pool:
 - o it contains the isolation condenser

Overall Pool:

o The water reservoir

Steam duct:

- It allows the steam flow from the HXP to the OP
- Triggering valve:
 - Its opening allows the actuation of the system
- OP discharge line
- OP Boil-off line

PERSEO – Transient simulation

HTC correlations available in R5-3D

- Film condensation
 - Default model: Nusselt for laminar, Chato-Shah for turbulent and Colburn-Hougen for diffusion of noncondensable gases
 - Optional model: Vierow-Shrock modification of Nusselt theory
- Boiling:
 - Chen for nucleate and transition boiling, Bromley for film boiling

HTC tuning and implementation in R5

Default models exceed validity ranges

- Multiplicative factor of 1.3 applied for HTC in condensation regime, based on Kutateladze correlation
- Multiplicative factor of 9 applied for HTC in pool boiling regime, based on Gorenflo correlation
- Implementing the right correlation in RELAP5 mod 3.3 we obtain very goof results without tuning

PERSEO – Transient simulation

<u>PhW 1 (10000 s \rightarrow 11260 s)</u>

- First activation of the system
- Good evaluation of the primary MFR
- Discrepancy on the HX power
- Good prediction of slow water consumption within HXP
- Satisfactory simulation of maximum values of HXP level and MFR
- Good agreement in the pressure drops

<u>PhW 2 (11260 s → 11845 s)</u>

- Quasi-steady operation
- Good evaluation of the MFR
- Underprediction of the HX power

<u>PhW 3 (11845 s → 14784 s)</u>

- Boil off in the HXP with a consequent level reduction and power decrease
- Globally agreement between experiment and simulation
- Typical stepwise change in the MFR and power decrease (due to discretization of nodalization scheme)
- Oscillations related to steam condensation instabilities

ALFRED reactor – Isolation Condenser analysis

- Sapienza studied the transient of the system developed by Ansaldo Nucleare
- Mono-dimensional region:
 - Reactor core
 - SG (primary and secondary side): 3 components
 - PP (3 separated PUMP components)
 - Region above the core
 - DHR system: 3 different systems (one per each SG)
 - DHR pool: 3 different pools (each one composed of three vertical PIPE components and multiple cross junctions)
- Three-dimensional region:
 - Component #100: core bypass and core inlet region
 - Component #110: RV pools
 - Volume and junction factors reproduces the main features of the RV geometry

IAEA CRP Benchmark analysis of FFTF

Sapienza participate to "IAEA CRP Benchmark analysis of FFTF loss of flow without scram test" with a detailed multiphysics modelling based on a NK/TH coupling approach involving RELAP5-3D© and PHISICS codes.

PHISICS/RELAP5-3D METHODOLOGY USED

- RELAP5-3D© 4.3.4 for the thermal-hydraulic domain (apparently less numerical instability during natural circulation in comparison to 4.4.2 for liquid metals, specific investigation needed)
- PHISICS in order to interpolate the cross sections (macro) and to calculate thermal power distributions (using Xsec set calculated by ERANOS 2.3 – JEFF 3.1.1)

Main focus is on the Gas Expansion Module (GEM) safety system, simulated with the free level of sodium and considered for temperature and density feedback in the NK, to physically evaluate the effect during the transient

FFTF ULOF transient results

- Primary circuit hot leg trend shows possible problems in the upper plenum temperature prediction
- Mass flow rate predicted, but relatively large oscillations are reported
 - General agreement for the temperature trend, but local PIOTA temperatures trend show a different behavior after the second peak, that will be investigated during the open phase.

•

CONCLUSIONS

- The main goal of the research activity has been to investigate the capabilities of RELAP5-3D[©] for LMFR
- Pool modelling has been recognized as relevant issue in the frame of STH code application. R5-3D has highlighted satisfactory capabilities: <u>MULTID approach is suggested when thermal stratification or asymmetrical effects are expected;</u> <u>otherwise, multiple vertical pipe approach is recommended</u>. Future works could be dedicated to the implementation of specific nodalization to improve the simulation of natural buoyancy within large plena
- Free level increases obviously the numerical instabilities, but it is possible to simulate also variation of meters and multiple levels with a realistic reproduction of the pressure field
- R5-3D, for **LMFR systems**, has shown good capabilities to reproduce behavior of primary systems under safety-relevant conditions
- The literature reported some criticalities in the prediction of passive safety systems based on IC submerged within water pool, especially related on the evaluation of the heat exchange. The present research activity has confirmed these issues: to improve results it is needed an HTC tuning. Our implementation of specific correlation in RELAP5 mod. 3.3 shows the possibility to solve the problem, obtaining very good results
- TH-NK analysis are in good agreement with experimental results, simulating directly free levels and void effects

THANKS FOR YOUR ATTENTION