Dual Number Automatic Differentiation in *RELAP5-3D*

Joshua D. Hodson, Ph.D. Candidate Utah State University August 6, 2015

- Gradient Calculation Methods A Brief Overview
- OR DNAD A Fortran implementation of Dual Number Automatic Differentiation
- Integration with *polate*
- Integration with *RELAP5-3D*
- ca Conclusion

- Gradient Calculation Methods A Brief Overview
- DNAD A Fortran implementation of Dual Number Automatic Differentiation
- **™** Integration with *polate*
- Integration with *RELAP5-3D*
- R Conclusion

Gradient Calculation Methods

- Modern engineering design & analysis processes rely heavily on computational methods
- Many of these processes require gradient calculations as part of the solution
 - ∪ncertainty analyses
 - Rarameter optimization
- "... the calculation of gradients is often the most costly step in the optimization cycle..." *

^{*} J. R. A. Martins, A Coupled-Adjoint Method for High-Fidelity AeroStructural Optimization. Ph.D. thesis, Aerospace Engineering, Stanford University, October 2002.

Gradient Calculation Methods

Method	Exact Analytical Solutions	Design of Experiments + Finite Difference Approximations	Adjoint Methods	Complex Step Derivatives	Dual Number Automatic Differentiation (DNAD)
Easy to implement in existing codes					
Accurate to machine precision					
Efficient run- time performance					
Considers sensitivity of a parameter to multiple inputs					
High level of maturity					

- *Gradient Calculation Methods − A Brief Overview*
- *DNAD* A Fortran implementation of Dual Number Automatic Differentiation
- **™** Integration with *polate*
- Integration with *RELAP5-3D*
- Conclusion

The Theory of Dual Numbers

Start with a Taylor Series expansion about x by an arbitrary perturbation parameter d:

$$\Re f(x+d) = f(x) + df'(x) + \frac{d^2}{2}f''(x) + \cdots$$

- Note that the exponent of d is the same as the order of the derivative for each term in the Taylor Series
- What happens when we multiply two functions together?

$$h(x+d) = f(x+d) \cdot g(x+d)$$

$$= \left(f + df' + \frac{d^2}{2}f'' + \cdots\right) \cdot \left(g + dg' + \frac{d^2}{2}g'' + \cdots\right)$$

$$= (fg) + d(fg' + f'g) + \frac{d^2}{2}(fg'' + 2f'g' + f''g) + \cdots$$

$$h \qquad h'$$

The Theory of Dual Numbers

- This works for *every* differentiable mathematical operation
- The chain rule of differentiation allows us to string multiple operations together
- This provides the *exact* analytical equation for derivatives of any order
- A *Dual Number* is a representation of the first two terms in the Taylor Series (i.e. the function value and its first derivative):
 - $\overline{\alpha} \ \langle f(x), f'(x) \rangle$
 - These are exact values, not truncated approximations!

The Theory of Dual Numbers

- Functions typically have more than one independent variable
- For convenience, we can expand the definition of a Dual Number to contain the full gradient of the function:

$$\begin{cases} f(x, y, z), \begin{bmatrix} f_x(x, y, z) \\ f_y(x, y, z) \\ f_z(x, y, z) \end{bmatrix} \end{cases}$$

where subscripts indicate partial derivatives (e.g. $f_x = \frac{\partial f}{\partial x}$)

- *Gradient Calculation Methods − A Brief Overview*
- ™ The Theory of Dual Numbers
- Number Automatic Differentiation

 Number Automatic Differentiation
- **™** Integration with *polate*
- Integration with *RELAP5-3D*
- ca Conclusion

- OR DNAD was developed by Dr. Wenbin Yu* as an open-source tool for design optimization
- Minor modifications to make the module more general
 - Number of design variables (independent parameters) can now be specified through a precompiler directive
 - Floating-point precision can now be specified through a precompiler directive
 - Support was added for additional mathematical operations that were not supported in Dr. Yu's original release

^{*} W. Yu and M. Blair, "DNAD, A Simple Tool for Automatic Differentiation of Fortran Codes Using Dual Numbers," Proceedings of the 35th Annual Dayton-Cincinnati Aerospace Science Simposium, Dayton, Ohio, March 9 2010.

- "Simple" process for integrating *DNAD* into an existing software package:
 - 1. Insert the statement "use dnadmod" at the beginning of each module, function, and subroutine that contain declarations of real numbers
 - 2. Convert all real number declarations to dual number declarations e.g. "real :: x" becomes "type(dual) :: x"
 - 3. Change I/O commands that used to read/write real number data such that the formatting accounts for the extra data contained in a dual number
 - 4. Compile the source code and the *DNAD* module into a new executable
- Use precompiler directives to activate/deactivate *DNAD* integration at compile-time, so that normal and *DNAD* executables can be compiled from a single code base

Original CircleArea.F90

program CircleArea

Modified CircleArea. F90

Original

Modified

○ Compiler commands:

\$ ifort CircleArea.F90

Representation:

\$./a.out
Enter a radius:
4.0

Area = 50.2654824574367

○ Compiler commands:

\$ ifort -c dnadmod.F90 -Dndv=1
\$ ifort CircleArea.F90 dnadmod.o -Ddnad

Representation:

\$./a.out Enter a radius: 4.0 1.0

Area = 50.2654824574367 **25.1327412287183**

- Previous efforts have been successful in integrating *DNAD* with existing analysis tools. In each case,
 - The code base was relatively small and developed by a single individual
 - I/O functions were performed using free formatting
 - Only minor modifications were needed to integrate the *DNAD* module into the software
 - OR DNAD integration proved to be an effective method for accurately and efficiently calculating variable gradients
- How does *DNAD* do with more complex software?

- *Gradient Calculation Methods − A Brief Overview*
- **™** The Theory of Dual Numbers
- DNAD A Fortran implementation of Dual Number Automatic Differentiation
- Integration with *polate*
- Integration with *RELAP5-3D*
- R Conclusion

- polate is a RELAP5-3D-based utility used to calculate fluid properties
 - Two state variables and a thermodynamic property table are inputs to the executable
 - A complete set of thermodynamic properties needed by *RELAP5-3D* are output by the executable
 - The thermodynamic properties are calculated using various methods
 - Interpolation from thermodynamic property tables

 - Reprised Empirical Correlations

- Two of the properties calculated by *polate* are functions of the specific volume (ν):
 - Thermal coefficient of expansion, $\beta = \frac{1}{\nu} \left(\frac{\partial \nu}{\partial T} \right)_{P}$
 - Coefficient of isothermal compressibility, $\kappa = -\frac{1}{\nu} \left(\frac{\partial \nu}{\partial P} \right)_T$
- or polate currently uses analytical formulas to evaluate the partial derivatives of specific volume appearing in these equations
- Finite difference calculations are also used to verify analytical formulas
- What are the advantages/disadvantages to using *DNAD* for these calculations instead?

Approach:

- Isolate functions used in calculating partial derivatives, and restrict *DNAD* module to this layer.
 - All I/O functions are performed at a higher level and remain unaffected by *DNAD* integration
- Use precompiler directives to enable/disable *DNAD* module and other code changes associated with *DNAD* integration
- Convert variable declarations from real to real_type for variables involved in calculating partial derivatives
- Add timers around functions used in calculating partial derivatives to compare *DNAD* efficiency with original
- Calculate percent deviation of *dnad*-calculated derivatives from derivatives calculated using the analytical solutions

Results:

- Took a considerable amount of effort to integrate *DNAD* module into *polate* (~47 hours)
- OR DNAD version of polate ran about 4x slower than unmodified version
- \bigcirc *DNAD* version results were in error by \sim 0.1-1.0%
 - Error is due to approximations in the modeling algorithm
 - *□ ONAD* results are exact for the equations being modeled

- *Gradient Calculation Methods − A Brief Overview*
- **™** The Theory of Dual Numbers
- *DNAD* A Fortran implementation of Dual Number Automatic Differentiation
- **™** Integration with *polate*
- ☐ Integration with *RELAP5-3D*
- ca Conclusion

- While it would be nice to be able to accept results from *RELAP5-3D* as "the answer", reality is that all engineering analyses have an inherent level of uncertainty associated with their results due to:
 - Uncertainties in input parameters
 - CR Uncertainties in the physical models
 - Uncertainties in the modeling algorithms
- Quantifying the uncertainty in analysis results is crucial to understanding the results

Consider a function f that is a function of n independent variables x_1 through x_n :

$$f = f(x_1, x_2, \dots, x_n)$$

 \bigcirc The uncertainty in f due to input parameters is:

$$U_f = \sqrt{\sum_{i=1}^n \left(U_{x_i} \frac{\partial f}{\partial x_i} \right)^2}$$

$$U_f = \sqrt{\sum_{i=1}^n \left(U_{x_i} \frac{\partial f}{\partial x_i} \right)^2}$$

- This equation includes the gradient of our function. How do we calculate the gradient?
 - Using finite difference methods would require at least 2 separate analyses for <u>each independent parameter</u>, just to get a 1st-order approximation
 - Using *DNAD*, we can get the entire gradient from a single analysis, accurate to machine precision
- Limitations of this approach:
 - Need to know uncertainty of each input parameter
 - Neglects uncertainties in physical models and modeling algorithms

- The *RELAP5-3D* installation files have been modified to include the *DNAD* module during compilation
- The *RELAP5-3D* source files have been automatically modified using a Linux shell script
- Some source files needed additional modifications due to:
 - A multitude of ways to declare real variables in Fortran
 - ca equivalence statements
 - data statements that initialize real, integer, and character variables
 - common blocks

Remaining work:

- Continue addressing source code issues that the shell script was not able to resolve automatically (91 files remain out of 670)
- I/O Modifications
 - Add input routines to allow users to specify design variables through a regular *RELAP5-3D* input deck
 - Modify output file formats to include variable derivatives
- © Compile a new *RELAP5-3D* executable and run validation and benchmarking test cases
- Complete an uncertainty analysis using the modified *RELAP5-3D* executable and compare to expected results
 - Can this method provide accurate and efficient calculations of variable gradients for use in uncertainty analyses?
 - Are the end results worth the effort of integrating the \overline{DNAD} module with $\overline{RELAP5-3D?}$

- *Gradient Calculation Methods − A Brief Overview*
- *DNAD* A Fortran implementation of Dual Number Automatic Differentiation
- **™** Integration with *polate*
- ☐ Integration with RELAP5-3D
- ca Conclusion

Conclusion

- Integration of *DNAD* into *polate* offered no benefits over the original method used for calculating derivatives
 - ™ Increased runtime and decreased accuracy
 - Demonstrated the feasibility of using compiler directives to turn *DNAD* module on or off at compile-time
- *DNAD* integration in *RELAP5-3D* has presented unique challenges compared to other investigations due to:
 - CR Large code base (about 760 source files, 300k lines of code)
 - Variations in programming styles among the many developers that have contributed to the software
 - Things to watch out for when integrating *DNAD* into existing software:

 - common blocks

Conclusion

Acknowledgments:

Or. Robert Spall, Department Head Mechanical and Aerospace Engineering Utah State University

Hope Forsmann and the rest of the *RELAP5-3D* team at INL – thanks for all your help and support this summer!

Funding for this research is provided by the DOE Office of Nuclear Energy's Nuclear Energy University Program (NEUP)

Backup Slides

Gradient Calculation Methods

Method	Pros	Cons		
Exact Analytical Solutions	 Accurate to machine precision Simple programming model Efficient run-time performance 	 Exact solutions are not always readily available Parameters of interest must be hard-coded into the software 		
Design of Experiments + Finite Difference Approximations	 No modifications to original source code Sensitivity to multiple parameters simultaneously 	 Truncation error Sensitive to parameter perturbation sizes Requires an excessive number of simulations 		
Adjoint Methods	 Accurate to machine precision Sensitivity to multiple parameters simultaneously Fast convergence to optimal design values 	 Extensive code modifications required Parameters of interest must be hard-coded into the software 		
Complex Step Derivatives	 Only requires minor changes to the original source code Parameter of interest is an input option, not hard-coded 	 Requires access to source code for initial implementation Truncation error (2nd order) Sensitivity to only one parameter per analysis 		
Dual Number Automatic Differentiation (DNAD)	 Accurate to machine precision Sensitivity to multiple parameters simultaneously Only requires minor changes to the original source code Parameters of interest are input options, not hard-coded 	 Requires access to source code for initial implementation Low maturity, limited validation studies 		

Defines a derived data type for representing dual numbers:

```
type, public :: dual
    sequence
    real :: x ! Functional value
    real :: dx(ndv) ! Partial derivatives
end type dual
```

Uses operator overloading to define dual number operations:

```
public operator (*)
interface operator (*)
   module procedure mult_dd
end interface

elemental function mult_dd(u, v) result(res)
   type(dual), intent(in) :: u, v
   type(dual) :: res
   res%x = u%x * v%x
   res%dx = u%x * v%dx + u%dx * v%x
end function mult
```


- Let's say we want to know the uncertainty in the Peak Cladding Temperature (U_{PCT}) reported by an analysis.
- Assume that inputs to the analysis are steady-state power (P), thermal conductivity of the gap (k), heat capacity of the fuel (c_p) , and heat transfer coefficient (h). (In reality, there could be many more.)
- The uncertainty in *PCT* can then be quantified by the following relationship:

$$U_{PCT} = \sqrt{\left(U_{P} \frac{\partial PCT}{\partial P}\right)^{2} + \left(U_{k} \frac{\partial PCT}{\partial k}\right)^{2} + \left(U_{c_{p}} \frac{\partial PCT}{\partial c_{p}}\right)^{2} + \left(U_{h} \frac{\partial PCT}{\partial h}\right)^{2}}$$

