
Dual Number Automatic Differentiation

in RELAP5-3D

Joshua D. Hodson, Ph.D. Candidate

Utah State University

August 6, 2015

Outline

 Gradient Calculation Methods – A Brief Overview

 The Theory of Dual Numbers

 DNAD – A Fortran implementation of Dual Number
Automatic Differentiation

 Integration with polate

 Integration with RELAP5-3D

 Conclusion

2

Outline

 Gradient Calculation Methods – A Brief Overview











3

Gradient Calculation Methods

 Modern engineering design & analysis processes rely

heavily on computational methods

 Many of these processes require gradient calculations

as part of the solution

 Uncertainty analyses

 Parameter optimization

 “... the calculation of gradients is often the most costly step in

the optimization cycle…” *

4

* J. R. R. A. Martins, A Coupled-Adjoint Method for High-Fidelity AeroStructural

Optimization. Ph.D. thesis, Aerospace Engineering, Stanford University, October 2002.

Gradient Calculation Methods

5

Method

Exact

Analytical

Solutions

Design of Experiments

+ Finite Difference

Approximations

Adjoint

Methods

Complex Step

Derivatives

Dual Number Automatic

Differentiation (DNAD)

Easy to

implement in

existing codes

Accurate to

machine

precision

Efficient run-

time

performance

Considers

sensitivity of a

parameter to

multiple inputs

High level of

maturity

Outline



 The Theory of Dual Numbers









6

The Theory of Dual Numbers

 Start with a Taylor Series expansion about x by an arbitrary
perturbation parameter d:

 𝑓 𝑥 + 𝑑 = 𝑓 𝑥 + 𝑑𝑓′ 𝑥 +
𝑑2

2
𝑓′′ 𝑥 +⋯

 Note that the exponent of d is the same as the order of the derivative for
each term in the Taylor Series

 What happens when we multiply two functions together?

 ℎ 𝑥 + 𝑑 = 𝑓 𝑥 + 𝑑 ∙ 𝑔 𝑥 + 𝑑

= 𝑓 + 𝑑𝑓′ +
𝑑2

2
𝑓′′ +⋯ ∙ 𝑔 + 𝑑𝑔′ +

𝑑2

2
𝑔′′ +⋯

= 𝑓𝑔 + 𝑑 𝑓𝑔′ + 𝑓′𝑔 +
𝑑2

2
𝑓𝑔′′ + 2𝑓′𝑔′ + 𝑓′′𝑔 +⋯

7

ℎ ℎ′ ℎ′′

The Theory of Dual Numbers

 This works for every differentiable mathematical operation

 The chain rule of differentiation allows us to string multiple
operations together

 This provides the exact analytical equation for derivatives of
any order

 A Dual Number is a representation of the first two terms in
the Taylor Series (i.e. the function value and its first
derivative):

 𝑓 𝑥 , 𝑓′(𝑥)

 These are exact values, not truncated approximations!

8

The Theory of Dual Numbers

 Functions typically have more than one independent
variable

 For convenience, we can expand the definition of a
Dual Number to contain the full gradient of the
function:

𝑓 𝑥, 𝑦, 𝑧 ,

𝑓𝑥(𝑥, 𝑦, 𝑧)
𝑓𝑦(𝑥, 𝑦, 𝑧)

𝑓𝑧(𝑥, 𝑦, 𝑧)

where subscripts indicate partial derivatives (e.g. 𝑓𝑥 =
𝜕𝑓

𝜕𝑥
)

9

Outline





 DNAD – A Fortran module implementation of Dual
Number Automatic Differentiation







10

DNAD

 DNAD was developed by Dr. Wenbin Yu* as an open-

source tool for design optimization

 Minor modifications to make the module more general

 Number of design variables (independent parameters)

can now be specified through a precompiler directive

 Floating-point precision can now be specified through a

precompiler directive

 Support was added for additional mathematical

operations that were not supported in Dr. Yu’s original

release

11

* W. Yu and M. Blair, “DNAD, A Simple Tool for Automatic Differentiation of Fortran

Codes Using Dual Numbers,” Proceedings of the 35th Annual Dayton-Cincinnati

Aerospace Science Simposium, Dayton, Ohio, March 9 2010.

DNAD

 “Simple” process for integrating DNAD into an existing
software package:
1. Insert the statement “use dnadmod” at the beginning of each module,

function, and subroutine that contain declarations of real numbers

2. Convert all real number declarations to dual number declarations

e.g. “real :: x” becomes “type(dual) :: x”

3. Change I/O commands that used to read/write real number data such
that the formatting accounts for the extra data contained in a dual
number

4. Compile the source code and the DNAD module into a new executable

 Use precompiler directives to activate/deactivate DNAD
integration at compile-time, so that normal and DNAD
executables can be compiled from a single code base

12

DNAD

Original CircleArea.F90

program CircleArea

 real*8, parameter ::

 pi=3.141592653589793d0

 real*8 :: radius, area

 write(*,*) “Enter a radius: ”

 read(*,*) radius

 area = pi * radius**2

 write(*,*) “Area = ”, area

end program CircleArea

Modified CircleArea.F90

13

program CircleArea

 #ifdef dnad

 use dnadmod

 #define real_type type(dual)

 #else

 #define real_type real*8

 #endif

 real_type, parameter ::

 pi=3.141592653589793d0

 real_type :: radius, area

 write(*,*) “Enter a radius: ”

 read(*,*) radius

 area = pi * radius**2

 write(*,*) “Area = ”, area

end program CircleArea

 Compiler commands:
 $ ifort –c dnadmod.F90 –Dndv=1

 $ ifort CircleArea.F90 dnadmod.o –Ddnad

 Program execution:
 $./a.out

 Enter a radius:

 4.0 1.0

 Area = 50.2654824574367 25.1327412287183

DNAD

Original

 Compiler commands:

 $ ifort CircleArea.F90

 Program execution:
 $./a.out

 Enter a radius:

 4.0

 Area = 50.2654824574367

Modified

14

DNAD
 Previous efforts have been successful in integrating

DNAD with existing analysis tools. In each case,

 The code base was relatively small and developed by a

single individual

 I/O functions were performed using free formatting

 Only minor modifications were needed to integrate the

DNAD module into the software

 DNAD integration proved to be an effective method for

accurately and efficiently calculating variable gradients

 How does DNAD do with more complex software?

15

Outline







 Integration with polate





16

Integration with polate

 polate is a RELAP5-3D-based utility used to calculate
fluid properties

 Two state variables and a thermodynamic property table
are inputs to the executable

 A complete set of thermodynamic properties needed by
RELAP5-3D are output by the executable

 The thermodynamic properties are calculated using
various methods

 Interpolation from thermodynamic property tables

 Analytical solutions

 Empirical correlations

17

Integration with polate

 Two of the properties calculated by polate are functions of the
specific volume (𝜈):

 Thermal coefficient of expansion, 𝛽 =
1

𝜈

𝜕𝜈

𝜕𝑇 𝑃

 Coefficient of isothermal compressibility, 𝜅 = −
1

𝜈

𝜕𝜈

𝜕𝑃 𝑇

 polate currently uses analytical formulas to evaluate the partial
derivatives of specific volume appearing in these equations

 Finite difference calculations are also used to verify analytical
formulas

 What are the advantages/disadvantages to using DNAD for these
calculations instead?

18

Integration with polate

 Approach:

 Isolate functions used in calculating partial derivatives, and
restrict DNAD module to this layer.

 All I/O functions are performed at a higher level and remain
unaffected by DNAD integration

 Use precompiler directives to enable/disable DNAD module
and other code changes associated with DNAD integration

 Convert variable declarations from real to real_type for
variables involved in calculating partial derivatives

 Add timers around functions used in calculating partial
derivatives to compare DNAD efficiency with original

 Calculate percent deviation of dnad-calculated derivatives
from derivatives calculated using the analytical solutions

19

Integration with polate

 Results:

 Took a considerable amount of effort to integrate DNAD

module into polate (~47 hours)

 DNAD version of polate ran about 4x slower than

unmodified version

 DNAD version results were in error by ~0.1-1.0%

 Error is due to approximations in the modeling algorithm

 DNAD results are exact for the equations being modeled

20

Outline









 Integration with RELAP5-3D



21

Integration with RELAP5-3D

 While it would be nice to be able to accept results from
RELAP5-3D as “the answer”, reality is that all engineering
analyses have an inherent level of uncertainty associated
with their results due to:

 Uncertainties in input parameters

 Uncertainties in the physical models

 Uncertainties in the modeling algorithms

 Quantifying the uncertainty in analysis results is crucial to
understanding the results

22

Integration with RELAP5-3D

 Consider a function 𝑓 that is a function of 𝑛
independent variables 𝑥1 through 𝑥𝑛:

𝑓 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

 The uncertainty in 𝑓 due to input parameters is:

𝑈𝑓 = 𝑈𝑥𝑖
𝜕𝑓

𝜕𝑥𝑖

2𝑛

𝑖=1

23

Integration with RELAP5-3D

𝑈𝑓 = 𝑈𝑥𝑖
𝜕𝑓

𝜕𝑥𝑖

2𝑛

𝑖=1

 This equation includes the gradient of our function. How do we
calculate the gradient?

 Using finite difference methods would require at least 2 separate analyses
for each independent parameter, just to get a 1st-order approximation

 Using DNAD, we can get the entire gradient from a single analysis,
accurate to machine precision

 Limitations of this approach:

 Need to know uncertainty of each input parameter

 Neglects uncertainties in physical models and modeling algorithms

24

Integration with RELAP5-3D

 Current Status:

 The RELAP5-3D installation files have been modified to

include the DNAD module during compilation

 The RELAP5-3D source files have been automatically

modified using a Linux shell script

 Some source files needed additional modifications due to:

 A multitude of ways to declare real variables in Fortran

 equivalence statements

 data statements that initialize real, integer, and

character variables

 common blocks

25

Integration with RELAP5-3D

 Remaining work:

 Continue addressing source code issues that the shell script was
not able to resolve automatically (91 files remain out of 670)

 I/O Modifications

 Add input routines to allow users to specify design variables
through a regular RELAP5-3D input deck

 Modify output file formats to include variable derivatives

 Compile a new RELAP5-3D executable and run validation and
benchmarking test cases

 Complete an uncertainty analysis using the modified RELAP5-3D
executable and compare to expected results

 Can this method provide accurate and efficient calculations of
variable gradients for use in uncertainty analyses?

 Are the end results worth the effort of integrating the DNAD
module with RELAP5-3D?

26

Outline











 Conclusion

27

Conclusion
 Integration of DNAD into polate offered no benefits over the

original method used for calculating derivatives

 Increased runtime and decreased accuracy

 Demonstrated the feasibility of using compiler directives to
turn DNAD module on or off at compile-time

 DNAD integration in RELAP5-3D has presented unique
challenges compared to other investigations due to:

 Large code base (about 760 source files, 300k lines of code)

 Variations in programming styles among the many developers
that have contributed to the software

 Things to watch out for when integrating DNAD into existing
software:

 equivalence statements

 data statements

 common blocks

28

Conclusion
 Acknowledgments:

 Dr. Robert Spall, Department Head

Mechanical and Aerospace Engineering

Utah State University

 Hope Forsmann and the rest of the

RELAP5-3D team at INL – thanks for

all your help and support this summer!

 Funding for this research is provided by

the DOE Office of Nuclear Energy’s

Nuclear Energy University Program

(NEUP)

29

Backup Slides

30

Gradient Calculation Methods

31

Method Pros Cons

Exact Analytical

Solutions

• Accurate to machine precision

• Simple programming model

• Efficient run-time performance

• Exact solutions are not always readily available

• Parameters of interest must be hard-coded into the

software

Design of Experiments

+ Finite Difference

Approximations

• No modifications to original source code

• Sensitivity to multiple parameters simultaneously

• Truncation error

• Sensitive to parameter perturbation sizes

• Requires an excessive number of simulations

Adjoint Methods

• Accurate to machine precision

• Sensitivity to multiple parameters simultaneously

• Fast convergence to optimal design values

• Extensive code modifications required

• Parameters of interest must be hard-coded into the

software

Complex Step

Derivatives

• Only requires minor changes to the original source code

• Parameter of interest is an input option, not hard-coded

• Requires access to source code for initial

implementation

• Truncation error (2nd order)

• Sensitivity to only one parameter per analysis

Dual Number

Automatic

Differentiation

(DNAD)

• Accurate to machine precision

• Sensitivity to multiple parameters simultaneously

• Only requires minor changes to the original source code

• Parameters of interest are input options, not hard-coded

• Requires access to source code for initial

implementation

• Low maturity, limited validation studies

DNAD

 Defines a derived data type for representing dual numbers:

type, public :: dual

 sequence

 real :: x ! Functional value

 real :: dx(ndv) ! Partial derivatives

end type dual

 Uses operator overloading to define dual number operations:

public operator (*)

interface operator (*)

 module procedure mult_dd

end interface

elemental function mult_dd(u, v) result(res)

 type(dual), intent(in) :: u, v

 type(dual) :: res

 res%x = u%x * v%x

 res%dx = u%x * v%dx + u%dx * v%x

end function mult

32

Integration with RELAP5-3D

 Let’s say we want to know the uncertainty in the Peak Cladding
Temperature (𝑈𝑃𝐶𝑇) reported by an analysis.

 Assume that inputs to the analysis are steady-state power (𝑃),
thermal conductivity of the gap (𝑘), heat capacity of the fuel (𝑐𝑝),
and heat transfer coefficient (ℎ). (In reality, there could be many
more.)

 The uncertainty in 𝑃𝐶𝑇 can then be quantified by the following
relationship:

𝑈𝑃𝐶𝑇 = 𝑈𝑃
𝜕𝑃𝐶𝑇

𝜕𝑃

2

+ 𝑈𝑘
𝜕𝑃𝐶𝑇

𝜕𝑘

2

+ 𝑈𝑐𝑝
𝜕𝑃𝐶𝑇

𝜕𝑐𝑝

2

+ 𝑈ℎ
𝜕𝑃𝐶𝑇

𝜕ℎ

2

33

