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Gradient Calculation Methods 

 Modern engineering design & analysis processes rely 

heavily on computational methods 

 Many of  these processes require gradient calculations 

as part of  the solution 

 Uncertainty analyses 

 Parameter optimization 

 “... the calculation of  gradients is often the most costly step in 

the optimization cycle…” * 
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* J. R. R. A. Martins, A Coupled-Adjoint Method for High-Fidelity AeroStructural 

Optimization. Ph.D. thesis, Aerospace Engineering, Stanford University, October 2002. 
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The Theory of  Dual Numbers 

 Start with a Taylor Series expansion about x by an arbitrary 
perturbation parameter d: 

 𝑓 𝑥 + 𝑑 = 𝑓 𝑥 + 𝑑𝑓′ 𝑥 +
𝑑2

2
𝑓′′ 𝑥 +⋯ 

 Note that the exponent of  d is the same as the order of  the derivative for 
each term in the Taylor Series 

 What happens when we multiply two functions together? 

 ℎ 𝑥 + 𝑑 = 𝑓 𝑥 + 𝑑 ∙ 𝑔 𝑥 + 𝑑  

= 𝑓 + 𝑑𝑓′ +
𝑑2

2
𝑓′′ +⋯ ∙ 𝑔 + 𝑑𝑔′ +

𝑑2

2
𝑔′′ +⋯  

= 𝑓𝑔 + 𝑑 𝑓𝑔′ + 𝑓′𝑔 +
𝑑2

2
𝑓𝑔′′ + 2𝑓′𝑔′ + 𝑓′′𝑔 +⋯ 
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The Theory of  Dual Numbers 

 This works for every differentiable mathematical operation 

 The chain rule of  differentiation allows us to string multiple 
operations together 

 This provides the exact analytical equation for derivatives of  
any order 

 A Dual Number is a representation of  the first two terms in 
the Taylor Series (i.e. the function value and its first 
derivative): 

 𝑓 𝑥 , 𝑓′(𝑥)  

 These are exact values, not truncated approximations! 
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The Theory of  Dual Numbers 

 Functions typically have more than one independent 
variable 

 For convenience, we can expand the definition of  a 
Dual Number to contain the full gradient of  the 
function: 

𝑓 𝑥, 𝑦, 𝑧 ,

𝑓𝑥(𝑥, 𝑦, 𝑧)
𝑓𝑦(𝑥, 𝑦, 𝑧)

𝑓𝑧(𝑥, 𝑦, 𝑧)

  

where subscripts indicate partial derivatives (e.g. 𝑓𝑥 =
𝜕𝑓

𝜕𝑥
) 

9 



Outline 





 DNAD – A Fortran module implementation of  Dual 
Number Automatic Differentiation 







10 



DNAD 

 DNAD was developed by Dr. Wenbin Yu* as an open-

source tool for design optimization 

 Minor modifications to make the module more general 

 Number of  design variables (independent parameters) 

can now be specified through a precompiler directive 

 Floating-point precision can now be specified through a 

precompiler directive 

 Support was added for additional mathematical 

operations that were not supported in Dr. Yu’s original 

release 
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* W. Yu and M. Blair, “DNAD, A Simple Tool for Automatic Differentiation of  Fortran 

Codes Using Dual Numbers,” Proceedings of  the 35th Annual Dayton-Cincinnati 

Aerospace Science Simposium, Dayton, Ohio, March 9 2010.  



DNAD 

 “Simple” process for integrating DNAD into an existing 
software package: 
1. Insert the statement “use dnadmod” at the beginning of  each module, 

function, and subroutine that contain declarations of  real numbers 

2. Convert all real number declarations to dual number declarations 

e.g. “real :: x” becomes “type(dual) :: x” 

3. Change I/O commands that used to read/write real number data such 
that the formatting accounts for the extra data contained in a dual 
number 

4. Compile the source code and the DNAD module into a new executable 

 Use precompiler directives to activate/deactivate DNAD 
integration at compile-time, so that normal and DNAD 
executables can be compiled from a single code base 
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DNAD 

Original CircleArea.F90 

program CircleArea 

 

 

 

 

 

 

 

    real*8, parameter :: 

               pi=3.141592653589793d0 

    real*8 :: radius, area 

 

    write(*,*) “Enter a radius: ” 

    read(*,*) radius 

    area = pi * radius**2 

    write(*,*) “Area = ”, area 

end program CircleArea 

Modified CircleArea.F90 
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program CircleArea 

    #ifdef dnad 

        use dnadmod 

        #define real_type type(dual) 

    #else 

        #define real_type real*8 

    #endif 

 

    real_type, parameter :: 

               pi=3.141592653589793d0 

    real_type :: radius, area 

 

    write(*,*) “Enter a radius: ” 

    read(*,*) radius 

    area = pi * radius**2 

    write(*,*) “Area = ”, area 

end program CircleArea 



 Compiler commands: 
     $ ifort –c dnadmod.F90 –Dndv=1 

     $ ifort CircleArea.F90 dnadmod.o –Ddnad 

      

 Program execution: 
     $ ./a.out 

     Enter a radius: 

     4.0 1.0 

     Area = 50.2654824574367 25.1327412287183 

 

DNAD 

Original 

 Compiler commands: 
 

     $ ifort CircleArea.F90 

 

 Program execution: 
     $ ./a.out 

     Enter a radius: 

     4.0 

     Area = 50.2654824574367 

 

Modified 
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DNAD 
 Previous efforts have been successful in integrating 

DNAD with existing analysis tools.  In each case, 

 The code base was relatively small and developed by a 

single individual 

 I/O functions were performed using free formatting 

 Only minor modifications were needed to integrate the 

DNAD module into the software 

 DNAD integration proved to be an effective method for 

accurately and efficiently calculating variable gradients 

 How does DNAD do with more complex software? 
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Integration with polate 

 polate is a RELAP5-3D-based utility used to calculate 
fluid properties 

 Two state variables and a thermodynamic property table 
are inputs to the executable 

 A complete set of  thermodynamic properties needed by 
RELAP5-3D are output by the executable 

 The thermodynamic properties are calculated using 
various methods 

 Interpolation from thermodynamic property tables 

 Analytical solutions 

 Empirical correlations 
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Integration with polate 

 Two of  the properties calculated by polate are functions of  the 
specific volume (𝜈): 

 Thermal coefficient of  expansion, 𝛽 =
1

𝜈

𝜕𝜈

𝜕𝑇 𝑃
 

 Coefficient of  isothermal compressibility, 𝜅 = −
1

𝜈

𝜕𝜈

𝜕𝑃 𝑇
 

 polate currently uses analytical formulas to evaluate the partial 
derivatives of  specific volume appearing in these equations 

 Finite difference calculations are also used to verify analytical 
formulas 

 What are the advantages/disadvantages to using DNAD for these 
calculations instead? 
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Integration with polate 

 Approach: 

 Isolate functions used in calculating partial derivatives, and 
restrict DNAD module to this layer. 

 All I/O functions are performed at a higher level and remain 
unaffected by DNAD integration 

 Use precompiler directives to enable/disable DNAD module 
and other code changes associated with DNAD integration 

 Convert variable declarations from real to real_type for 
variables involved in calculating partial derivatives 

 Add timers around functions used in calculating partial 
derivatives to compare DNAD efficiency with original 

 Calculate percent deviation of  dnad-calculated derivatives 
from derivatives calculated using the analytical solutions 
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Integration with polate 

 Results: 

 Took a considerable amount of  effort to integrate DNAD 

module into polate (~47 hours) 

 DNAD version of  polate ran about 4x slower than 

unmodified version 

 DNAD version results were in error by ~0.1-1.0% 

 Error is due to approximations in the modeling algorithm 

 DNAD results are exact for the equations being modeled 
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Integration with RELAP5-3D 

 

 

 While it would be nice to be able to accept results from 
RELAP5-3D as “the answer”, reality is that all engineering 
analyses have an inherent level of  uncertainty associated 
with their results due to: 

 Uncertainties in input parameters 

 Uncertainties in the physical models 

 Uncertainties in the modeling algorithms 

 Quantifying the uncertainty in analysis results is crucial to 
understanding the results 
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Integration with RELAP5-3D 

 Consider a function 𝑓 that is a function of  𝑛 
independent variables 𝑥1 through 𝑥𝑛: 

𝑓 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 

 The uncertainty in 𝑓 due to input parameters is: 

𝑈𝑓 =  𝑈𝑥𝑖
𝜕𝑓

𝜕𝑥𝑖

2𝑛

𝑖=1
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Integration with RELAP5-3D 

𝑈𝑓 =  𝑈𝑥𝑖
𝜕𝑓

𝜕𝑥𝑖

2𝑛

𝑖=1

 

 This equation includes the gradient of  our function. How do we 
calculate the gradient? 

 Using finite difference methods would require at least 2 separate analyses 
for each independent parameter, just to get a 1st-order approximation 

 Using DNAD, we can get the entire gradient from a single analysis, 
accurate to machine precision 

 Limitations of  this approach: 

 Need to know uncertainty of  each input parameter 

 Neglects uncertainties in physical models and modeling algorithms 
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Integration with RELAP5-3D 

 Current Status: 

 The RELAP5-3D installation files have been modified to 

include the DNAD module during compilation 

 The RELAP5-3D source files have been automatically 

modified using a Linux shell script 

 Some source files needed additional modifications due to: 

 A multitude of  ways to declare real variables in Fortran 

 equivalence statements 

 data statements that initialize real, integer, and 

character variables 

 common blocks 
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Integration with RELAP5-3D 

 Remaining work: 

 Continue addressing source code issues that the shell script was 
not able to resolve automatically (91 files remain out of  670) 

 I/O Modifications 

 Add input routines to allow users to specify design variables 
through a regular RELAP5-3D input deck 

 Modify output file formats to include variable derivatives 

 Compile a new RELAP5-3D executable and run validation and 
benchmarking test cases 

 Complete an uncertainty analysis using the modified RELAP5-3D 
executable and compare to expected results 

 Can this method provide accurate and efficient calculations of  
variable gradients for use in uncertainty analyses? 

 Are the end results worth the effort of  integrating the DNAD 
module with RELAP5-3D? 
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Conclusion 
 Integration of  DNAD into polate offered no benefits over the 

original method used for calculating derivatives 

 Increased runtime and decreased accuracy 

 Demonstrated the feasibility of  using compiler directives to 
turn DNAD module on or off  at compile-time 

 DNAD integration in RELAP5-3D has presented unique 
challenges compared to other investigations due to: 

 Large code base (about 760 source files, 300k lines of  code) 

 Variations in programming styles among the many developers 
that have contributed to the software 

 Things to watch out for when integrating DNAD into existing 
software: 

 equivalence statements 

 data statements 

 common blocks 
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Gradient Calculation Methods 
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Method Pros Cons 

Exact Analytical 

Solutions 

• Accurate to machine precision 

• Simple programming model 

• Efficient run-time performance 

• Exact solutions are not always readily available 

• Parameters of interest must be hard-coded into the 

software 

Design of Experiments 

+ Finite Difference 

Approximations 

• No modifications to original source code 

• Sensitivity to multiple parameters simultaneously 

• Truncation error 

• Sensitive to parameter perturbation sizes 

• Requires an excessive number of simulations 

Adjoint Methods 

• Accurate to machine precision 

• Sensitivity to multiple parameters simultaneously 

• Fast convergence to optimal design values 

• Extensive code modifications required 

• Parameters of interest must be hard-coded into the 

software 

Complex Step 

Derivatives 

• Only requires minor changes to the original source code 

• Parameter of interest is an input option, not hard-coded 

• Requires access to source code for initial 

implementation 

• Truncation error (2nd order) 

• Sensitivity to only one parameter per analysis 

Dual Number 

Automatic 

Differentiation 

(DNAD) 

• Accurate to machine precision 

• Sensitivity to multiple parameters simultaneously 

• Only requires minor changes to the original source code 

• Parameters of interest are input options, not hard-coded 

• Requires access to source code for initial 

implementation 

• Low maturity, limited validation studies 



DNAD 

 Defines a derived data type for representing dual numbers: 

type, public :: dual 

 sequence 

 real :: x  ! Functional value 

 real :: dx(ndv)  ! Partial derivatives 

end type dual 

 Uses operator overloading to define dual number operations: 

public operator (*) 

interface operator (*) 

 module procedure mult_dd 

end interface 

  

elemental function mult_dd(u, v) result(res) 

 type(dual), intent(in) :: u, v 

 type(dual) :: res 

 res%x = u%x * v%x 

 res%dx = u%x * v%dx + u%dx * v%x 

end function mult 
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Integration with RELAP5-3D 

 Let’s say we want to know the uncertainty in the Peak Cladding 
Temperature (𝑈𝑃𝐶𝑇) reported by an analysis. 

 Assume that inputs to the analysis are steady-state power (𝑃), 
thermal conductivity of  the gap (𝑘), heat capacity of  the fuel (𝑐𝑝), 
and heat transfer coefficient (ℎ).  (In reality, there could be many 
more.) 

 The uncertainty in 𝑃𝐶𝑇 can then be quantified by the following 
relationship: 

𝑈𝑃𝐶𝑇 = 𝑈𝑃
𝜕𝑃𝐶𝑇

𝜕𝑃

2

+ 𝑈𝑘
𝜕𝑃𝐶𝑇

𝜕𝑘

2

+ 𝑈𝑐𝑝
𝜕𝑃𝐶𝑇

𝜕𝑐𝑝

2

+ 𝑈ℎ
𝜕𝑃𝐶𝑇

𝜕ℎ

2
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