
w
w

w
.i
n

l.
g

o
v

Improvements in Sequential
Verification

Dr. George Mesina

International RELAP5-3D User Group Meeting

Date: Aug 13, 2015

Overview

• Basic idea of Sequential Verification

• Method – Primary variables, verification file

• Statistical Theory

• Detection

• Coverage

• Future

Sequential Verification (SV)

Software Verification

• Evaluates a software system or component to determine whether the

products of a given development phase satisfy the conditions imposed

at the start of that phase.

Sequential Verification (SV)

• If sequence of code versions produces same calculations tracing back

to initial development

• OR if changes to calculations are justified (bug fix, development, etc.)

• I.E. No unexpected, unjustified differences in code calculations

Which calculations do we compare?

Sequential Verification Theory – Basics

• Primary variables are the ones solved for in the governing equations

– Secondary variables derive from them and, on the next time step,
contribute to building the system solved for primary variables

– Tertiary variables are output only. No feedback to primary vars.

• If a secondary variable is calculated incorrectly in one code version,
but not another, on a given step

– Some primary variable(s) will be wrong on the next step when the
system is solved for primary variables.

• Secondary variables are unnecessary for finding differences.

Sequential Verification RELAP5-3D Primary Vars

• Primary variables are the ones solved for in the governing equations

 Quantity In manual On file

Pressure P P

Liquid internal energy Uf Uf

Gas internal energy Ug Ug

Void fraction of gas αg VOIDg

Noncondensable quality Xn QUALa

Liquid velocity Vf Vf

Gas velocity Vg Vg

Heat Structure Temperature T Temp

Neutron flux φ Flux

Timesteps sum Δt, Δtkin dtsum

Trips Tr Trips

Control system value Y Cntrl

Sequential Verification Theory – Basics

• Calculate L1-norms of the arrays of primary variables and write them
on a verification file.

• Compare verification files between 2 runs by different code versions

• If L1-norms are exactly the same, want to conclude code’s calculations
are unaffected by code changes between versions

Verification File for RELAP5-3D

• Verification file displays ID and dumps of L1-norms of primary variables

Header
* ID of Code

& Computer

* Date/Time

Compiled

* Date/Time of

Run

Input Case #
& Title

Dump: Dump #, Adv #, Time, L
1
-norms in Sci & Hex

Sequential Verification Theory – Basics

• Verification has two parts

– Detection – Finding differences between versions for given input

– Coverage – Exercising a wide variety of code capability via input

• Examine Detection first

• Is comparing just primary variable L1-norms sufficient?

Sequential Verification – Questions

Comparing just primary variable L1-norms – 3 possible sources of error:

1. Calculations could differ only on timesteps not dumped to file

2. Two different arrays may have the same L1-norm

3. It catches differences in primary and secondary variables (due to
feedback into system solved for primary vars.), but not tertiary vars.

Answer to 1: Once a calculation has a difference, the difference does
not disappear in later advancements (generally grows)

Answer to 2: Well-posed problems admit only one solution, so occurs
only when quadruple precision sum insufficient (34 places)

Complex answer to #3…

Sequential Verification Theory

• Statistical Hypothesis Testing

– H0: For every test case “i” in the test suite, the two corresponding
runs produce the same calculations

– A0: Code calculations are different some test case i

• Hypothesis Testing Table for Test

• Goal of Hypothesis Testing is to control Type I Error at some level, 
(generally 5%, 1%, or lower) while minimizing Type II Error

– Type I errors are called false positives, Type II are false negatives

 H0 is true

No differences exist

H0 is false

Differences do exist

Accept H0 Correct

Report: “No differences”

Type II Error

Miss actual differences

Reject H0 Type I Error

Detect non-existent differences

Correct

Report: “Differences found”

Sequential Verification – Application

• Statistical Hypothesis Testing

– H0: For every test case “i” in the test suite, the two corresponding
runs produce the same calculations

• Stated this way because the test applies to more than just simple code
runs. Can also test the following code features

– Restart

– Backup

– PVM Coupling

– MORE…

 H0 is true

No differences

H0 is false

Differences

Accept H0 Correct Type II Error

Reject H0 Type I Error Correct

Sequential Verification Theory

• Theorem 1: SV Verification File Test has level of significance, α = 0

 It always accepts the null hypothesis when it’s true

 No Type I Error. No false positives.

• Interpretation: If properly programmed, SV test will never report
nonexistent code bugs

– No false positives

• Corollary: For testing restart, backup and PVM, the SV Test has level
of significance, α = 0

What about Type II error?

Does SV ever miss differences?

 H0 is true

No differences

H0 is false

Differences

Accept H0 Correct Type II Error

Reject H0 Type I Error Correct

SV Theory

• Theorem 2: If L1-norm calculated in quadruple precision & N > 3, then
 P(Accept H0 | primary or secondary variables differ) < 10–18

• The diffem test that applies the “diff” utility to compare output files to
examine tertiary variables.

• Combine SV (Sequential Verification) test with diffem

• Theorem 3: P(Type II Error | SV & diffem find no difference) < 10–5

Probability of missing an actual error is 0.001%

Recall: Must program properly!
 H0 is true

No differences

H0 is false

Differences

Accept H0 Correct Type II Error

Reject H0 Type I Error Correct

Verification Improvements – DETECTION

PROGRAM PROPERLY

• Verification programming errors discovered and corrected

– In the placement of the calls to verification subprograms

– In the implementation of backup testing

RELAP5-3D Corrections/Improvements via verification

• Numerous issues with code backup were discovered in RELAP5-3D

– Variables not saved/restored in subroutine MOVER

– Some variables could not be saved/restored in MOVER had to be

backed up elsewhere

• Variables missing from the restart file were identified and added

• R5-Exec issues were corrected

– Time exchanges with RELAP5-3D were found and fixed

– Time calculations were improved to quadruple precision as needed

Verification Improvements – COVERAGE

• Coverage is design and inclusion of tests that exercise code features

– Nearly 200 code features are tested

– Differences can be detected only by test cases

• Verification Test suite was expanded by 22 input decks

– Now 65 input decks and 195 cases

– Added many new input decks for PVM

– Added tests that had revealed the issues listed on previous slide

• Features were added to the Makefile to test each capability by itself
and in groups (such as PVM base cases and restart)

Verification Improvements – COVERAGE

Categories of covered code features

• Hydrodynamic components: pipes, separators, etc.

• Control volume flags: thermal stratification, mixture level, etc.

• Additional wall friction options: shape factor, viscosity ratio, etc.

• Junction flags: jet junction, CCFL, etc.

• Junction form loss: constant, abrupt area change, etc.

• Heat structure geometry type: rectangular, cylindrical, spherical

• Heat structure boundary conditions: adiabatic, convective, etc.

• Heat source options: radial factor shape, table, etc.

• Material properties: built-in, user input (functions and tables)

• Control Functions: arithmetic operations, controllers, etc.

Verification Improvements – COVERAGE

Categories of covered code features

• Trips: logical or variables

• General Tables: power, temperature, etc.

• Reactor kinetics: point, nodal

• Decay heat: No decay heat, ANS/ANSI Standard options

• Equation solvers: BPLU, PGMRES, LSOR, Krylov, etc.

• Timestep integration schemes: semi-implicit, nearly-implicit.

• Covered code features that do not fit these categories

– noncondensables

– cases with or without boron tracking

– Certain developmental (card-1) options

COVERAGE – New Input

Input Model Description

cpl_det A simplified version of TYPPWR (test 40) that tests the detector model

with pt. kinetics

cpl_det_new Same as cpl_det (test 51) with modified weighting factors and

attenuation coefficients.

cpl_new_sa Version of TYPPWR (test 40) that tests detector model w nodal kinetics

cpl_pvm_core Christensen model domain decomposed into two semi-implicitly coupled

regions, one with the center of the pipe representing the core, the other

with the upper and lower portions.

cpl_pvmcs Edward’s pipe problem adapted to test control system coupling

cpl_pvmeda Edward’s pipe problem split in half to test asynchronous coupling

cpl_pvmedca Edward’s pipe problem split in half to test asynchronous explicit

conserving coupling

cpl_pvmedcs Edward’s pipe problem split in half to test synchronous explicit coupling

cpl_pvmnd A version of TYPPWR (test 40) that tests nodal kinetics coupling

cpl_pvmnonc Parallel pipes tests multiple connections to a coupling TDV and multiple

noncondensables

cpl_pvmpt A version of TYPPWR (test 40) that tests point kinetics coupling

COVERAGE – New Input

Input Model Description

det Tests the detector model.

det_new Tests the detector model.

do_nothing Tests if zero flow and zero heat transfer are maintained in a

rectangular solid of 3x5 vols. constructed of 5 volume pipes

connected by multiple junctions.

ht_expl_fluid Tests explicit fluid-to-heat structure coupling

ht_imp_fluid Tests implicit fluid-to-heat structure coupling

nothing_trans Tests moving problems translational acceleration specified by both

periodic and table input in a 3x3x5 rectangular solid built of 5 volume

pipes connected by multiple junctions.

pvmcore Tests ability of RELAP5-3D to run the vessel interior of a modified

Christensen model[8, 9].

pvmcs Edward’s pipe problem adapted to test control system

pvmnonc Parallel pipes tests multiple connections to TDV and multiple

noncondensables

pvmpt A version of TYPPWR (test 40) that tests point kinetics

tdvtdj Tests multiple connections to a TDV.

Future Sequential Verification Improvements

• Other capabilities to verify

– Multi-case

– Multi-deck

– Input

• Renodalization

• Restart table & control variable deletion/addition

• Should fail testing – compare output against comments in file

– Physics-based testing:

• activation/deactivation of models

• Track activivation/deactivation correlation w failed time step

