Improvements in Sequential Verification

Dr. George Mesina

International RELAP5-3D User Group Meeting

Date: Aug 13, 2015

Overview

- Basic idea of Sequential Verification
- Method Primary variables, verification file
- Statistical Theory
- Detection
- Coverage
- Future

Sequential Verification (SV)

Software Verification

 Evaluates a software system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase.

Sequential Verification (SV)

- If sequence of code versions produces same calculations tracing back to initial development
- OR if changes to calculations are justified (bug fix, development, etc.)
- I.E. No unexpected, unjustified differences in code calculations

Which calculations do we compare?

Sequential Verification Theory – Basics

- Primary variables are the ones solved for in the governing equations
 - Secondary variables derive from them and, on the next time step, contribute to building the system solved for primary variables
 - Tertiary variables are output only. No feedback to primary vars.
- If a secondary variable is calculated incorrectly in one code version, but not another, on a given step
 - Some primary variable(s) will be wrong on the next step when the system is solved for primary variables.
- Secondary variables are unnecessary for finding differences.

Sequential Verification RELAP5-3D Primary Vars

Primary variables are the ones solved for in the governing equations

Quantity	In manual	On file
Pressure	Р	Р
Liquid internal energy	U_f	Uf
Gas internal energy	U_g	Ug
Void fraction of gas	α_{g}	VOIDg
Noncondensable quality	X_n	QUALa
Liquid velocity	V_{f}	Vf
Gas velocity	V_{g}	Vg
Heat Structure Temperature	T	Temp
Neutron flux	φ	Flux
Timesteps sum	Δt, Δt _{kin}	dtsum
Trips	T _r	Trips
Control system value	Υ	Cntrl

Sequential Verification Theory – Basics

- Calculate L₁-norms of the arrays of primary variables and write them on a verification file.
- Compare verification files between 2 runs by different code versions
- If L₁-norms are exactly the same, want to conclude code's calculations are unaffected by code changes between versions

Verification File for RELAP5-3D

Verification file displays ID and dumps of L₁-norms of primary variables

Sequential Verification Theory – Basics

- Verification has two parts
 - Detection Finding differences between versions for given input
 - Coverage Exercising a wide variety of code capability via input
- Examine Detection first
- Is comparing just <u>primary</u> variable L₁-norms sufficient?

Sequential Verification – Questions

Comparing just **primary** variable L_1 -norms – 3 possible sources of error:

- 1. Calculations could differ only on timesteps not dumped to file
- 2. Two different arrays may have the same L₁-norm
- 3. It catches differences in primary and secondary variables (due to feedback into system solved for primary vars.), but <u>not tertiary vars</u>.
- Answer to 1: Once a calculation has a difference, the difference does not disappear in later advancements (generally grows)
- Answer to 2: Well-posed problems admit only one solution, so occurs only when quadruple precision sum insufficient (34 places)

Complex answer to #3...

Sequential Verification Theory

- Statistical Hypothesis Testing
 - H₀: For every test case "i" in the test suite, the two corresponding runs produce the same calculations
 - A₀: Code calculations are different some test case i
- Hypothesis Testing Table for Test

	H ₀ is true No differences exist	H ₀ is false Differences do exist
Accept H ₀	Correct Report: "No differences"	Type II Error Miss actual differences
Reject H ₀	Type I Error Detect non-existent differences	Correct Report: "Differences found"

- Goal of Hypothesis Testing is to control Type I Error at some level, α (generally 5%, 1%, or lower) while minimizing Type II Error
 - Type I errors are called false positives, Type II are false negatives

Sequential Verification – Application

- Statistical Hypothesis Testing
 - H₀: For every test case "i" in the test suite, the two corresponding runs produce the same calculations
- Stated this way because the test applies to more than just simple code runs. Can also test the following code features
 - Restart
 - Backup
 - PVM Coupling
 - MORE…

	H₀ is true No differences	H ₀ is false Differences
Accept H ₀	Correct	Type II Error
Reject H ₀	Type I Error	Correct

Sequential Verification Theory

- Theorem 1: SV Verification File Test has level of significance, α = 0
 It always accepts the null hypothesis when it's true
 No Type I Error. No false positives.
- Interpretation: If <u>properly programmed</u>, SV test will <u>never</u> report <u>nonexistent code bugs</u>
 - No false positives
- Corollary: For testing restart, backup and PVM, the SV Test has level of significance, α = 0

What about Type II error?

Does **SV** ever miss differences?

	H₀ is true No differences	H ₀ is false Differences
Accept H ₀	Correct	Type II Error
Reject H ₀	Type I Error	Correct

SV Theory

- Theorem 2: If L₁-norm calculated in quadruple precision & N > 3, then $P(Accept H_0 | primary or secondary variables differ) < 10^{-18}$
- The diffem test that applies the "diff" utility to compare output files to examine tertiary variables.
- Combine SV (Sequential Verification) test with diffem
- Theorem 3: P(Type II Error | SV & diffem find no difference) < 10⁻⁵

Probability of missing an actual error is 0.001%

Recall: Must program properly!

	H₀ is true No differences	H ₀ is false Differences
Accept H ₀	Correct	Type II Error
Reject H ₀	Type I Error	Correct

Verification Improvements – DETECTION

PROGRAM PROPERLY

- Verification programming errors discovered and corrected
 - In the placement of the calls to verification subprograms
 - In the implementation of backup testing

RELAP5-3D Corrections/Improvements via verification

- Numerous issues with code backup were discovered in RELAP5-3D
 - Variables not saved/restored in subroutine MOVER.
 - Some variables could not be saved/restored in MOVER had to be backed up elsewhere
- Variables missing from the restart file were identified and added
- R5-Exec issues were corrected
 - Time exchanges with RELAP5-3D were found and fixed
 - Time calculations were improved to quadruple precision as needed

Verification Improvements – COVERAGE

- Coverage is design and inclusion of tests that exercise code features
 - Nearly 200 code features are tested
 - Differences can be detected only by test cases
- Verification Test suite was expanded by 22 input decks
 - Now 65 input decks and 195 cases
 - Added many new input decks for PVM
 - Added tests that had revealed the issues listed on previous slide
- Features were added to the Makefile to test each capability by itself and in groups (such as PVM base cases and restart)

Verification Improvements – COVERAGE

Categories of covered code **features**

- Hydrodynamic components: pipes, separators, etc.
- Control volume flags: thermal stratification, mixture level, etc.
- Additional wall friction options: shape factor, viscosity ratio, etc.
- Junction flags: jet junction, CCFL, etc.
- Junction form loss: constant, abrupt area change, etc.
- Heat structure geometry type: rectangular, cylindrical, spherical
- Heat structure boundary conditions: adiabatic, convective, etc.
- Heat source options: radial factor shape, table, etc.
- Material properties: built-in, user input (functions and tables)
- Control Functions: arithmetic operations, controllers, etc.

Verification Improvements - COVERAGE

Categories of covered code **features**

- Trips: logical or variables
- General Tables: power, temperature, etc.
- Reactor kinetics: point, nodal
- Decay heat: No decay heat, ANS/ANSI Standard options
- Equation solvers: BPLU, PGMRES, LSOR, Krylov, etc.
- Timestep integration schemes: semi-implicit, nearly-implicit.
- Covered code features that do not fit these categories
 - noncondensables
 - cases with or without boron tracking
 - Certain developmental (card-1) options

COVERAGE - New Input

Input Model	Description
cpl_det	A simplified version of TYPPWR (test 40) that tests the detector model with pt. kinetics
cpl_det_new	Same as cpl_det (test 51) with modified weighting factors and attenuation coefficients.
cpl_new_sa	Version of TYPPWR (test 40) that tests detector model w nodal kinetics
cpl_pvm_core	Christensen model domain decomposed into two semi-implicitly coupled regions, one with the center of the pipe representing the core, the other with the upper and lower portions.
cpl_pvmcs	Edward's pipe problem adapted to test control system coupling
cpl_pvmeda	Edward's pipe problem split in half to test asynchronous coupling
cpl_pvmedca	Edward's pipe problem split in half to test asynchronous explicit conserving coupling
cpl_pvmedcs	Edward's pipe problem split in half to test synchronous explicit coupling
cpl_pvmnd	A version of TYPPWR (test 40) that tests nodal kinetics coupling
cpl_pvmnonc	Parallel pipes tests multiple connections to a coupling TDV and multiple noncondensables
cpl_pvmpt	A version of TYPPWR (test 40) that tests point kinetics coupling

COVERAGE - New Input

Input Model	Description
det	Tests the detector model.
det_new	Tests the detector model.
do_nothing	Tests if zero flow and zero heat transfer are maintained in a rectangular solid of 3x5 vols. constructed of 5 volume pipes connected by multiple junctions.
ht_expl_fluid	Tests explicit fluid-to-heat structure coupling
ht_imp_fluid	Tests implicit fluid-to-heat structure coupling
nothing_trans	Tests moving problems translational acceleration specified by both periodic and table input in a 3x3x5 rectangular solid built of 5 volume pipes connected by multiple junctions.
pvmcore	Tests ability of RELAP5-3D to run the vessel interior of a modified Christensen model ^[8, 9] .
pvmcs	Edward's pipe problem adapted to test control system
pvmnonc	Parallel pipes tests multiple connections to TDV and multiple noncondensables
pvmpt	A version of TYPPWR (test 40) that tests point kinetics
tdvtdj	Tests multiple connections to a TDV.

Future Sequential Verification Improvements

- Other capabilities to verify
 - Multi-case
 - Multi-deck
 - Input
 - Renodalization
 - Restart table & control variable deletion/addition
 - Should fail testing compare output against comments in file
 - Physics-based testing:
 - activation/deactivation of models
 - Track activivation/deactivation correlation w failed time step