

HTTF Scoping Calculations

International RELAP5 Users Group Seminar September 12-13, 2013 Idaho Falls, Idaho

Paul D. Bayless Idaho National Laboratory

Outline

- Scoping analysis objectives
- HTTF description
- RELAP5-3D input model description
- System heatup simulations
- System cooldown simulations
- System reheat simulations
- Summary

aho National Laboratory

High Temperature Test Facility (HTTF)

- Integral experiment being built at Oregon State University
- Electrically-heated, scaled model of a high temperature gas reactor
 - Reference is the MHTGR (prismatic blocks)
 - Large ceramic block representing core and reflectors
 - ¼ length scale
 - Prototypic coolant inlet (259°C) and outlet (687°C) temperatures
 - Less than scaled power
 - Maximum pressure of ~700 kPa
- Primary focus is on depressurized conduction cooldown transient

High Temperature Test Facility

Next Generation Nuclear Plant

Scoping Analysis Objectives

- Investigate some simple approaches to normal plant operational evolutions
- Determine approximate timing
- Estimate resource requirements
- Get a feel for the overall system response

High Temperature Test Facility (HTTF) RELAP5-3D Input Model Description

- Four systems
 - Primary coolant
 - Secondary coolant
 - Reactor cavity
 - Reactor cavity cooling system (RCCS)
- Central and side reflector regions divided into regions with or without coolant holes
- 2-D (radial/axial) conduction in all vertical heat structures
- Heater block unit cell centered on the coolant channel
- Radial conduction and radiation inside core barrel
- Radiation from core barrel to vessel to RCCS

aho National Laboratory

Reactor Vessel Nodalization

- Multiple flow paths through core
 - Three heated channels
 - Central reflector
 - Side reflector
- Gaps on either side of permanent side reflector not flow-through
- Riser annulus between core barrel and pressure vessel
- No coolant between upper plenum shield and upper head

Next Generation

HTTF RELAP5-3D Core Region Radial Nodalization

HTTF Ex-vessel Nodalization (base)

HTTF Ex-vessel Nodalization (modified)

Idaho National Laboratory

Initial Heatup Calculations

- Entire system at ambient temperature (28°C) and pressure
- Steam generator secondary full of air
- Core ceramic heatup rate limited to 55.6°C/h
- Principal interest is steam generator response
 - Minimize steaming
 - Maintain tube integrity
- Approach
 - Start feedwater flow before tubes reach saturation temperature
 - Use compressor only for initial heatup
 - Maximum allowed heatup rate

Initial Heatup Boundary Conditions

- Primary helium flow of 1.0 kg/s
- Feedwater flow
 - 0.01 kg/s starting when tubes approach saturation temperature
 - Controlled to maintain vessel inlet temperature of 258.6°C
- Constant RCCS flow of 0.5 kg/s of 17°C water
- Ambient heat loss only modeled on back side of RCCS panels

Initial Heatup Core Temperatures

Initial Heatup Reflector Temperatures

Initial Heatup Outer Structure Temperatures

Initial Heatup Steam Generator Tube Temperatures

Initial Heatup System Pressures

Next Generation Nuclear Plant

Initial Heatup Heater Rod Power

System Heatup Observations

- Heater rods reach full power in 17 hours
- Full heatup will take about 24 hours
- Temperatures may be close enough after 21 hours
- Portions of the steam generator tubes are uncovered
- Steam generator uses about 35,000 kg (9,300 gal) of water
- Heater rods require about 25,000 kWh
- More helium needed to reach operating pressure

System Cooldown Calculations

- Begins after a 2-day depressurized conduction cooldown (DCC) test
 - Turn power off, close break valves, open loop isolation valve
- Controlled cooldown
 - 55.6°C/h maximum ceramic cooldown rate
 - Primary control through primary coolant flow rate
- Walk-away
 - Break valves stay open
 - No feedwater or RCCS flow
- Maximum cooldown
 - Ignores cooldown rate limitation

Controlled Cooldown Core Temperatures

Controlled Cooldown Reflector Temperatures

Controlled Cooldown Outer Structure Temperatures

Controlled Cooldown Helium Temperatures

Next Generation Nuclear Plant

Controlled Cooldown System Pressures

Walk-away Cooldown Reflector Temperatures

Next Generation Nuclear Plant

Maximum Cooldown Reflector Temperatures

System Cooldown Observations

- Cooldown at the maximum rate will take about 24 hours, using about 11,000 kg (2,800 gal) of water
- Cooling down by turning the power off and walking away will take about 3 weeks
- At full primary coolant flow, cooldown would take about 12 hours, using about 9,300 kg (2,500 gal) of water
- For forced flow cooldown cases, the steam generator secondary limits the ultimate temperature

System Reheat Calculations

- Begins after a 2-day DCC test
 - Turn power off, close break valves, open loop isolation valve
- One-hour cooldown to re-introduce hot helium to steam generator tubes
- Reheat at 55.6°C/h in the core ceramic
- Feedwater controlled to maintain nominal vessel inlet helium temperature
- Helium added to repressurize primary system

System Reheat Core Temperatures

System Reheat Reflector Temperatures

System Reheat Outer Structure Temperatures

System Reheat Heater Rod Power

System Reheat Observations

- Initial need is to cool the system
- There may be a window in which the system can be recovered relatively quickly

Summary

- Simulations of plant operational evolutions have been performed
- Evolutions were not optimized
- Initial system heatup
 - Takes about 1 day
 - Steam generator tubes are partially uncovered
- System cooldown
 - Takes about 1 day at the maximum cooldown rate
 - Takes about 3 weeks if left alone
 - Might be cooled down in about 12 hours in an emergency
- System reheat

Might be able to be accomplished in 12 hours or less

ho National Laboratory