
w
w

w
.in

l.g
ov

Architectural Issues and
Developments in RELAP5-3D
Dr. George Mesina

RELAP5 International Users Seminar
Idaho Falls, ID
September 12-13, 2013

Outline
•  Recent Issues and Solutions
•  Architectural Development
•  Announcements on Compilers and O/S
•  New Documents

Issues going from 4.0.3 to Version 4.1.3
•  Two major issues were encountered and solved

–  Order of evaluation in if-tests
•  UP 13016

–  Issues associated with allocating and deallocating memory
•  Many UP related to this

Order of Evaluation
•  The order of evaluation is left to right in the C language and numerous

other programming languages.
•  ANSI FORTRAN does not enforce this in any standard.

–  Historically, it has been left to right on most computer platforms.
–  With multi-core processors, it is seldom the case anymore.

•  This affects many kinds of statements. Examples (.OP. means logical
operator:

1. IF (G(i) expression) .OP. (F(i) expression)) THEN
2. IF ((protection clause) .AND. (protected clause)) THEN

•  In #1, the F(i) or (Gi) are functions that change “i”, then whichever
goes first can affect what the second one takes as input.

Order of Evaluation cont…
•  #2. IF ((Protector Clause) .AND. (Protected Clause)) THEN
•  In left-to-right evaluation, the evaluation stops whenever the first clause

(the protector) is false. The second is never evaluated.
•  Examples of this concept:

–  Protector Clause Protected Clause
–  X >= 0 sqrt(x)
–  X /= 0 1/x
–  i > 0 array(i)
–  ALLOCATED(v) DEALLOCATE(v)
–  .NOT.ASSOCIATED(v) ALLOCATE(v(NVAR))
–  PRESENT(callArgument) callArgument = 0

•  The impact of evaluating the right-hand (protected) clause before the
left-hand clause varies from negligible to core-dump

Order of Evaluation
•  The solution is to break the if-test

 If ((protection clause) .AND. (protected clause)) then
•  Becomes

 If (protection clause) then
 If (protected clause) then

•  This forces the evaluation to occur in the proper order.

Order of Evaluation
•  More than 293,000 lines of code
•  More than 34,000 if-statements
•  More than 1200 if-statements fit the patters:

–  2 or more clauses
–  1 or more AND-operator(s) and
–  Either an array-reference or a function call

•  3 developers searched the1200 statements
–  In RELAP and ENVRL directories
–  Did not examine fluids directories

•  More than 60 if-statements required splitting

Issues with Allocating and Deallocating Memory
•  Errors with allocating and deallocating memory can cause

–  Out of bounds array access
–  Memory leaks
–  Hanging of the machine (in a non-parallel process!)

•  This has only occurred in restarts with multiple input cases.
•  Out of bounds array access either fetches wrong values or overwrites

values in other memory locations
–  The latter can destroy data or (machine) coding
–  It seldom evidences itself immediately
–  Therefore, it can be difficult to track down

Issues with Allocating and Deallocating Memory
•  Memory leaks cause problems when memory is repeatedly created

and destroyed incorrectly
–  It can occur if a pointer is eliminated without first deallocating it
–  E.G. a sub-derived type array gets destroyed by deallocating the

derived type that contains it w/o destroying it first
–  The memory is “lost” to your process.

•  RELAP5-3D input decks with multiple cases can cause a build-up of
memory leaks

•  It is an error to allocate an array that is already allocated and to
deallocated one that is not allocated.

Issues with Allocating and Deallocating Memory
•  It is an error to access an array that is not yet allocated.

•  IF (.NOT.ALLOCATED(a)) ALLOCATE(a(na))
•  ALLOCATE(a(1)%b(nb))

–  With multi-core computers this can produce errors if 1st core has
not completed memory set up for “a” when 2nd core attempts to
allocate “b”

–  A safer method:
•  IF (.NOT.ALLOCATED(a)) THEN

–  ALLOCATE(a(na), STAT=istat)
–  IF (istat == 0) ALLOCATE(a(1)%b(nb))

•  ENDIF
–  NOTE: do not need to check allocation of “b” because if “a” is not

allocated, the a(1)%b is not allocated either.

Issues with Allocating and Deallocating Memory
•  Initially nearly a dozen restart input decks with a significant number of

input cases hung the machine
–  Linux with ifort 10.1

•  INL protected nearly every allocate and deallocate statement with if-
allocated-tests

•  Number of failures in secondary input cases have been reduced to 3
input models.
–  Linux with ifort 11.1

•  Still working to solve these final issues.

Development: Isolation
•  The purpose of isolation of data and coding is to prevent inadvertent

memory access errors
–  Reduce chance of introducing bugs into code.

•  Ideally, modules are intended to supply data and coding that acts only
on that data

•  Modules should use the “private” attribute on memory and
subprograms not intended for use outside the module.

•  Ideally, modules should USE only level 0 modules
–  Level 0 modules have universal scalars.

•  E.G. intrmod, consmod, ctrlmod
–  Prevents circular references: A uses B uses C uses A

•  Simplifies installation process

Development: Isolation
•  Plan to gradually remove some module references from some modules

–  Simplify by removing one module reference at a time
•  For modules that need few (say up to 3 variables) from another module

–  No need to USE the other module
–  The variables can be passed into the subprogram that uses them

through call parameters.
•  For modules that have a subprogram that needs many variables from

other modules (and many from the module containing it)
–  Consideration will be given to promoting that subroutine out of the

module to independent status.
•  In non-module subprograms, employ:

–  use module, only
•  Existing subprograms and modules are exempted – for now

Development: Isolation
•  New module verifymod.F90 models this development.
•  It references two level 0 modules:

–  use intrtype
–  use ufilsmod, only: verifl

•  None of its six subprograms have any use statements.
–  Two require data from outside which are accessed through the

individual call sequences
•  Two subroutines were spun out

–  Verfsum required data from a dozen other modules – too many
–  Verfbackup required half a dozen such references

Announcements
•  In keeping up with advancements in the computing industry, decisions

have been made and implemented.
–  Compilers and levels
–  Computer platforms
–  Installation procedures

•  Due to limited resources, INL limits its official support of compilers,
operating systems and installation procedures.
–  This limits what the RELAP5 team can support

Announcements
•  Official Compiler: Intel Fortran level 11.1

–  Both Windows 7 and Linux
•  Unsupported compilers

–  RELAP5-3D does install with ifort 10.1 and ifort 12.1
•  Performance is not as reliable with these two as with 11.1

–  The code will install with other compilers, but INL does not support
them

Announcements
•  INL IT supports Windows 7 and SUSE Linux platforms

–  Windows XP is no longer supported
–  Windows 8 is not (yet) supported
–  No other Linux is not supported (in particular: Cygwin and Redhat)

•  INL RELAP5-3D Team supports installation on
–  Windows 7 with Visual Studio 2008

•  Have purchased and installed VS 2012, but not yet working
with it

–  Linux via Linux C-shell scripts and Makefiles
•  It is possible to install RELAP5-3D on Macintosh systems, but INL

department does not support this.

New Documents for RELAP5-3D and Auxiliaries
•  PROGRAMMING

–  G. L. Mesina, “Guidelines for developing RELAP5-3D coding, INL/
EXT-13-29228, Rev 1, June 2013.

•  INSTALLING
–  J. H. Forsmann, G. L. Mesina, “RELAP5-3D Windows 7 Build,”

INL/MIS-12-27541 Rev. 1, October 2012.
–  J. H. Forsmann, “RGUI Configuration Guide ,” GDE 648, INL/

MIS-13-30082, Sep 2013.
•  RUNNING

–  J. H. Forsmann, J. E. Fisher, G. L. Mesina, “PYGMALION User’s
Manual,” GDE-621, INL/MIS-13-28216, INL/MIS-13-30083, March
2013.

–  J. H. Forsmann, “RGUI Help Manual: RELAP5-3D Graphical User
Interface,” GDE 649, INL/MIS-13-30083, Sep 2013.

SUMMARY
•  Computer advancements affect RELAP5-3D performance, accordingly

changes are being made.
•  Reported issues relating to multi-processors have been addressed

–  Order of evaluation in if-tests
–  Issues associated with allocating and deallocating memory

•  New RELAP5-3D development will employ isolation of data and code
•  RELAP5-3D support announcements:

–  SUSE Linux and Windows 7 only
–  MS Visual Studio 2008
–  Intel Fortran/C 11.1

•  Many new documents have been prepared and are available

