RELAP-7 Code Development Status Update and Future Plan

Presented by: Hongbin Zhang

RELAP-7 Team:

- Theory:
- Simulation:
- Framework:
- Collaborators:

Ray Berry and Richard Martineau Haihua Zhao, Ling Zou, and Hongbin Zhang David Andrs and John W Peterson Rui Hu and Thomas Fanning from ANL Steve Hess and Gregg Swindlehurst from EPRI

IRUG Meeting September 12, 2013

www.inl.gov

RELAP-7 Overview

- The RELAP-7 application is the next generation nuclear reactor system safety analysis code.
- The code is based upon the MOOSE (Multi-Physics Object-Oriented Simulation Environment) framework: continuous finite element method (CFEM), implicit fully coupled components, mesh and time adaptivity, parallel software
- Fully implicit solver achieved by Jacobian-Free Newton Krylov (JFNK) method (MOOSE's main solver). Other time integration schemes include PCICE (operator split, being implemented) and a point implicit method (long duration transients, prototyped not yet implemented)
- 2nd-order accurate temporal and spatial discretization (reduces the traditional numerical errors)
- Well-posed 7-equation two-phase flow model
- Ability to couple to multi-dimensional reactor simulators through MOOSE

Multiphysics Coupling (Credit to Derek Gaston at INL)

- Loose Coupling / Operator Split
 - 1. Solve PDE1
 - 2. Pass Data
 - 3. Solve PDE2
 - 4. Move To Next Timestep
- Tight Coupling
 - 1. Solve PDE1
 - 2. Pass Data
 - 3. Solve PDE2
 - 4. Pass Data
 - 5. Return to 1 Until Convergence
 - 6. Move To Next Timestep
- Fully Coupled (**RELAP-7**)
 - Solve PDE1 and PDE2 simultaneously in _one_ system
 - 2. Move To Next Timestep

Components Completed

Component Name	Descriptions		
TimeDependentVolume	Time Dependent Volume to set pressure and temperature boundary conditions		
TimeDependentJunction	Time Dependent Junction to set velocity and temperature boundary conditions		
TDM	Time Dependent Mass flow rate (TDM) to set mass flow rate and temperature boundary conditions		
Branch	Multiple in and out 0-D volume/junction, which provides form loss coefficients (K), for either isothermal flow or non-isothermal flow		
Pump	Simple pump model to provide a head and reverse flow form loss coefficients (K), for either isothermal flow or non-isothermal flow		
Pipe	1-D fluid flow within 1-D solid structure with wall friction and heat transfer		
PipeWithHeatStructure	Simulating real 1-D pipe with solid walls (fluid flow coupled with 1-D/2-D conduction through the pipe wall); can take Adiabatic, Dirichlet, or Convective boundary conditions at the outer surface of the pipe wall		
CoreChannel	Simulating flow channel and fuel rod thermal hydraulics, including 1-D fluid flow and fuel rod heat conduction for either plate type or cylinder type of fuel		
HeatExchanger	Co-current or counter-current Heat exchanger model, including fluid flow in two sides and heat conduction through the solid wall		

Components Completed - Continues

Component Name	Descriptions		
DownComer	Large volume to mix different streams of water and steam and to track the water level		
Valve	Simulate control mechanisms of real valves in a hydrodynamic system		
Turbine	A simplified dynamical turbine model to simulate a reactor core isolation cooling (RCIC) turbine, which drives the RCIC pump through a common shaft		
WetWell	Simulate a BWR suppression pool and its gas space		
Reactor	A virtual component that allows users to input the reactor power		
SeparatorDryer	Separating steam and water with mechanical methods, 1 in and 2 outs, 0-D volume		
PointKinetics	0-D point kinetic neutronics model to simulate reactor kinetics and decay heat generation		

FY12 Accomplishments

- Established the software framework
- Developed components to demonstrate single-phase capability
- Completed a Level 2 Milestone report -INL/EXT-12-25924: "Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7"

Simplified TMI-1 NPP Test

Simplified TMI-1 NPP test (continued)

Expected core inlet/outlet temperature: 564.15K/ 591.15K Calculated core inlet/outlet temperature: 564.05K/ 590.92K

Advanced PWR Design with 157 Channels

FY13 Accomplishments

- Extended the capability to two-phase flow
- 7-equation model has been implemented and demonstrated with a Pipe, SeparatorDryer, & CoreChannel
 - Level 2 Milestone report "RELAP7: Demonstrating Seven-Equation, Two-Phase Flow Simulation in a Single-Pipe, Two-Phase Reactor Core and Steam Separator/Dryer (INL/EXT-13-28750)"
- Demonstrate Simplified BWR Station Blackout Simulations with homogeneous equilibrium model (a subset of the 7equation model)
 - Level 2 Milestone report: "RELAP-7 Simulation Resolving an SBO Scenario on a Simplified Geometry of a BWR (INL/EXT-13-29887)"

7-Equation, Well-Posed, Compressible Two-Phase Flow Model (1-D Variable Area)

(volume fraction evolution, mass balance, momentum balance, and total energy balance for each phase)

Liquid Phase

$$\frac{\partial \alpha_l A}{\partial t} + \boldsymbol{u}_{\text{int}} A \frac{\partial \alpha_l}{\partial x} = A \boldsymbol{\mu} (p_l - p_g) - \frac{\Gamma A_{\text{int}} A}{\rho_{\text{int}}}$$

$$\frac{\partial \alpha_{i} \rho_{i} A}{\partial t} + \frac{\partial \alpha_{i} \rho_{i} u_{i} A}{\partial x} = -\Gamma A_{\text{int}} A$$

$$\frac{\partial \alpha_{l} \rho_{l} u_{l} A}{\partial t} + \frac{\partial \alpha_{l} A(\rho_{l} u_{l}^{2} + p_{l})}{\partial x} = p_{\text{int}} A \frac{\partial \alpha_{l}}{\partial x} + p_{l} \alpha_{l} \frac{\partial A}{\partial x} + A \lambda (u_{g} - u_{l})$$
$$-\Gamma A_{\text{int}} u_{\text{int}} A - f_{l} \alpha_{l} \rho_{l} u_{l}^{2} (\pi A)^{\frac{1}{2}}$$
$$-f_{l}' \frac{1}{2} \rho_{l} (u_{l} - u_{\text{int}})^{2} A_{\text{int}} A + \alpha_{l} \rho_{l} \vec{g} \cdot \hat{n}_{axis} A$$

$$\begin{aligned} \frac{\partial \alpha_{l} \rho_{l} E_{l} A}{\partial t} + \frac{\partial \alpha_{l} u_{l} A(\rho_{l} E_{l} + p_{l})}{\partial x} &= p_{\text{int}} u_{\text{int}} A \frac{\partial \alpha_{l}}{\partial x} \\ &- \overline{p}_{\text{int}} A \mu(p_{l} - p_{g}) + \overline{u}_{\text{int}} A \lambda(u_{g} - u_{l}) \\ &+ \Gamma A_{\text{int}} \left(\frac{p_{\text{int}}}{\rho_{\text{int}}} - H_{l \text{int}} \right) A \\ &+ A_{\text{int}} h_{Tl} (T_{\text{int}} - T_{l}) A \\ &+ \alpha_{l} h_{lw} (T_{w} - T_{l}) \left[4\pi A + \left(\frac{\partial A}{\partial x} \right)^{2} \right]^{\frac{1}{2}} \\ &+ \alpha_{l} \rho_{l} u_{l} \overline{g} \cdot \widehat{n}_{axis} A \end{aligned}$$

Vapor Phase

$$\frac{\partial \alpha_g A}{\partial t} + \boldsymbol{u}_{int} A \frac{\partial \alpha_g}{\partial x} = A \boldsymbol{\mu} (\boldsymbol{p}_g - \boldsymbol{p}_l) + \frac{\Gamma A_{int} A}{\boldsymbol{\rho}_{int}} \qquad \left(or \ \boldsymbol{\alpha}_g = 1 - \boldsymbol{\alpha}_l \right)$$

$$\frac{\partial \alpha_g \rho_g A}{\partial t} + \frac{\partial \alpha_g \rho_g u_g A}{\partial x} = \Gamma A_{\text{int}} A$$

$$\frac{\partial \alpha_{g} \rho_{g} u_{g} A}{\partial t} + \frac{\partial \alpha_{g} A(\rho_{g} u_{g}^{2} + p_{g})}{\partial x} = p_{int} A \frac{\partial \alpha_{g}}{\partial x} + p_{g} \alpha_{g} \frac{\partial A}{\partial x} + A \lambda (u_{l} - u_{g})$$
$$+ \Gamma A_{int} u_{int} A - f_{g} \alpha_{g} \rho_{g} u_{g}^{2} (\pi A)^{\frac{1}{2}}$$
$$- f_{g}' \frac{1}{2} \rho_{g} (u_{g} - u_{int})^{2} A_{int} A + \alpha_{g} \rho_{g} \vec{g} \cdot \hat{n}_{axis} A$$

$$\begin{aligned} \frac{\partial \alpha_g \rho_g E_g A}{\partial t} + \frac{\partial \alpha_g u_g A(\rho_g E_g + \rho_g)}{\partial x} &= p_{\text{int}} u_{\text{int}} A \frac{\partial \alpha_g}{\partial x} \\ &- \overline{p}_{\text{int}} A \mu (p_g - p_l) + \overline{u}_{\text{int}} A \lambda (u_l - u_g) \\ &- \Gamma A_{\text{int}} \left(\frac{p_{\text{int}}}{\rho_{\text{int}}} - H_{g \text{int}} \right) A \\ &+ A_{\text{int}} h_{Tg} (T_{\text{int}} - T_g) A \\ &+ \alpha_g h_{gw} (T_w - T_g) \left[4\pi A + \left(\frac{\partial A}{\partial x} \right)^2 \right]^{\frac{1}{2}} \\ &+ \alpha_g \rho_g u_g \overline{g} \cdot \hat{n}_{axis} A \end{aligned}$$

7-Equation Model Demonstration

BWR SBO Scenario I – No Safety Injection

Peak Clad Temperature

BWR SBO Scenario II – Fully Coupled RCIC System

Major Simulation Sequences

- Initializing the simulation to steady state:
 - All the safety valves close, primary system valves open.
 - Run to steady state with rated thermal power.
- At t = 0 s, Reactor scrams and SBO begins
- At t = 1 second:
 - Feedwater line valve begins to close and becomes fully closed at t = 2 s.
 - Main steam isolation valve begins to close and becomes fully closed at t = 11 s.
- From t = 10 second to 7,270 second, the RCIC system is turned on and off for three periods with a transition time of 10s between all the changes of status
 - 1st period of turning on RCIC system for 30 minutes (same mass flow rate at 40 kg/ s for steam release through RCIC turbine as water injection through RCIC pump)
 - 1st period of turning off RCIC system for 15 minutes
 - 2nd period of turning on RCIC system for 30 minutes (mass flow rate at 40 kg/s)
 - 2nd period of turning off RCIC system for 15 minutes
 - 3rd period of turning on RCIC system for 30 minutes (mass flow rate at 20 kg/s)
- From t = 7,270 second and on, maintains pressure release through turbine with mass flow rate at 20 kg/s and shuts off makeup water supply through the RCIC pump
- At t = 22,937 second, simulation stops when the PCT approaches 1477.6 K (2200F).

RCIC Turbine Shaft Work

Reactor Vessel Pressure

DownComer Liquid Level

Peak Clad Temperature

Wet Well Suppression Pool Temperature

RELAP-7 Timeline

FY 2012	FY 2013	FY 2014	FY 2015 and beyond
 3 equation single phase Heat structures Basic components 	 -7 equation two phase flow - Additional relevant components and physics for SBO 	 Develop the full set of components to perform SBO for a BWR Prepare the code for external release 	 Develop and upgrade closure laws. Improve physical modeling of equation parameters Extend the number of available components
Demonstration of a steady state PWR simulation	BWR SBO simulation on simplified system with relevant components	- Initial beta release - SBO for a BWR with Mark I containment	 Comprehensive Verification & Validation (V&V) & Uncertainty Quantification (UQ) Delivering a large set of validating benchmarks

Demonstration of Fully Coupled Subchannel Capability (TMI-1 Steady State Case)

Multi-Dimensional Capability

Idaho National Laboratory

The National Nuclear Laboratory

