

Verification and Validation of a Single-Phase Natural Circulation Loop Model in RELAP5-3D

Nicolas Zweibaum 2013 International RELAP5 Users Group Meeting September 12-13, 2013 Idaho Falls, ID

U.S. Department of Energy

Research Objectives

- Develop accurate models of the thermal-hydraulics behavior of the Pebble-Bed Fluoride-salt-cooled, High-temperature Reactor (PB-FHR)
 - Identify characteristic phenomena in the system
 - Identify gaps in existing modeling tools to replicate these phenomena
 - Develop the missing validation basis for the thermalhydraulics models
- Use the developed models to enhance the design of the PB-FHR

Presentation Outline

- 1. Introduction of Research Methodology, PB-FHR Concept and Applicability of RELAP5-3D
- 2. IETs for Natural Circulation Heat Transfer: the Compact Integral Effects Test (CIET) Test Bay
- 3. Solution and Code Verification for Natural Circulation
- 4. Code and Model Validation
- 5. Conclusions and Future Plans

1. Introduction of Research Methodology, PB-FHR Concept and Applicability of RELAP5-3D

Research Methodology

• Top-down and bottom-up approach:

The PB-FHR: a DOE-Funded, 3-Year Long Integrated Research Project

- Passive safety mechanisms
- Mobile fuel (pebble compacts)

UCB Nuclear Engineering Thermal Hydraulics Lab **U.S. Department of Energy**

Nuclear Energy University Programs

E OF TH

Applicability of RELAP5-3D

• Modeling and validation gaps for the PB-FHR:

Key PB-FHR phenomena	Existing LWR basis
Liquid salt (high Pr fluid) coolant	Water coolant
Natural circulation decay heat removal	Limited natural circulation decay heat removal
Pebble bed core (flow dynamics & heat transfer)	Fuel pin assemblies
Potential for coolant freezing	Potential for coolant boiling
Significant radiative heat transfer to structural materials at high temperature	-

 IETs and SETs must be developed to characterize key phenomena, and serve as a validation basis for RELAP5-3D (or any other system code) thermal-hydraulics models

2. IETs for Natural Circulation Heat Transfer: the Compact Integral Effects Test (CIET) Test Bay

Scaling Methodology: Natural Circulation

• Prandtl number dictates the selection of the simulant fluid and its average operating temperature for scaled experiments where heat transfer phenomena are important:

$$Pr = \frac{v}{\alpha} = \frac{\text{momentum diffusivity}}{\text{thermal diffusivity}}$$

• For buoyancy-driven flow, the Grashof number must also be matched:

$$Gr = \frac{\beta \Delta T g L^3}{\nu^2} = \beta \Delta T \cdot \frac{g L^3}{\nu^2} = \frac{\text{buoyancy forces}}{\text{viscous forces}}$$
$$(\beta \Delta T)_m = (\beta \Delta T)_p \iff \frac{\beta_m}{\beta_p} = \frac{\Delta T_p}{\Delta T_m}$$
$$\left(\frac{g L^3}{\nu^2}\right)_m = \left(\frac{g L^3}{\nu^2}\right)_p \iff \left(\frac{L_m}{L_p}\right)^{3/2} = \frac{\nu_m}{\nu_p}$$

Applicability to the PB-FHR: Integral Effects Testing for PB-FHR Transients Using Dowtherm A Simulant Fluid

Scaling parameters to match average Pr and Gr for flibe and Dowtherm A (Re also matches):

		DRACS, normal operation	DRACS, natural circulation	Primary loop
Flibe Temperature [°C]		543	567	652
Dowtherm A Temperature [°C]		51	59	95
Length scale	L_m/L_p	0.49	0.48	0.45
Velocity scale	U_m/U_p	0.70	0.69	0.67
ΔT scale	$\Delta T_m / \Delta T_p$	0.31	0.31	0.30
Transient time scale	τ_m/τ_p	0.70	0.69	0.67
Pumping power	$P_{p,m}/P_{p,p}$			3.1%
Heating power	$P_{q,m}/P_{q,p}$			1.6%

The CIET Test Bay Single Phase Natural Circulation Loop Using Dowtherm A

- Research objectives:
 - Demonstrate natural circulation phenomenology (single loop) and decay heat removal capability
 - Use experimental data to validate numerical models

• Experimental configuration:

- Square loop with vertical heater, heat exchanger and connected piping
- Annular heater with needle valve to vary friction factor
- Tube-in-tube water-cooled heat exchanger
- Instrumentation: Coriolis flowmeter, type-T thermocouples and manometer lines

RELAP5-3D Model of the CIET Test Bay

- Working fluid: Dowtherm A
- Boundary conditions:
 - Adiabatic on stainless steel inner tube of the annular heater
 - Uniform heat flux to solid on stainless steel outer tube of annular heater
 - Copper piping with 5-cm-thick fiberglass insulation on hot and cold legs
 - 10°C uniform temperature on outer wall of inner heat exchanger tube (25°C in RELAP)
 - 20°C ambient temperature around rest of loop
 - 101.33 kPa pressure at free surface of expansion tank
- More details on hydrodynamic component and heat structure parameters in paper

3. Solution and Code Verification for Natural Circulation

Solution Verification: Sensitivity of Natural Circulation Mass Flow Rate to a **Range of Input Parameters**

Model input parameter	Parameter range	Sensitivity of solution*
Expansion tank temperature [°C]	25 - 180	Not sensitive
Loop initial temperature [°C]	25 - 180	Not sensitive
Loop initial pressure [kPa]	100 - 200	Not sensitive
Loop initial mass flow rate [kg/s]	0.01 - 1	Not sensitive
Form losses	0 - 10	Not sensitive
Wall radial discretization [number of meshes]	2 - 20	Not sensitive
Hot leg and cold leg axial discretization [number of control volumes]	10 - 50	Not sensitive
Heater and heat exchanger axial discretization [number of control volumes]	6 - 60	Sensitive

*Not sensitive: solution varies by less than 0.1% for any value of the parameter

1,20E-02

1,15E-02 1.10E-02 1,05E-02 1.00E-02

Code Verification: Comparison of RELAP5-3D Solutions to Analytical Solutions

- 5,E-02 Analytical solution for natural RELAP5-3D circulation mass flow rate: Analytical, T from RELAP5-3D 4,E-02 **Mass Flow Rate [kgs]** 3,E-02 2,E-02 1,E-02 Analytical, T Low $\dot{m}^3 = \frac{2\rho_{av}^2 g\beta}{c_{p,av}} \cdot \frac{\Delta z_{NC} Q_h}{F'}$ Analytical, T High $F' = \sum_{i=1}^{N} \left(\frac{1}{A_{i}^{2}} \cdot \frac{L_{i}}{D_{i}} \right) f_{i}$ $f = \frac{64}{Re} \text{ for } 0 < Re < 2000$ 1,E-02 $f = \frac{Re^{1/3}}{381}$ for 2000 < Re < 4000 0,E+002 8 10 Heat Input [kW]
- Potential explanations to discrepancy in high end of laminar flow region and transition region:
 - Use of average fluid thermophysical properties for analytical solution
 - Use of different correlations for transition regime

Code Verification: Sensitivity to Heat Exchanger Wall Temperature

- Higher heat exchanger wall temperature leads to higher fluid average temperature
 - Leads to higher natural circulation mass flow rate
 - Important effect to take into account for future studies

- Conclusions of verification effort:
 - Agreement between RELAP5-3D results and analytical solutions is within 5% in the laminar regime and within 8% in the transition regime
 - RELAP5-3D solutions lie between the low and high values of analytical solutions
 - Model has been developed to a point where it is only sensitive to relevant physical parameters for our application

4. Code and Model Validation

Direct Comparison of RELAP5-3D Solutions to Experimental Data

- Low heat inputs:
 - Agreement between RELAP5-3D results and experimental data within 10%
 - RELAP5-3D solutions inside uncertainty bands of the data
- Higher heat inputs:
 - Major trend of the data correctly predicted by RELAP5-3D
 - Agreement between RELAP5-3D results and experimental data within 20%
 - Calculation results outside but near uncertainty bands of the data
- Observed overprediction of mass flow rate for a given heat input not conservative for this application

Non-Dimensional Comparison of RELAP5-3D Solutions to Experimental Data

- Same conclusions
- Literature suggests using an alternate friction coefficient in the transition regime, based on experimental data:

$$f = \frac{1.2063}{Re^{0.416}} \text{ for } 898 < Re < 3196$$

 This could be the main explanation to observed discrepancies between RELAP5-3D calculations and CIET Test Bay data, but no way to implement alternate laminar friction factor in RELAP5-3D

5. Conclusions and Future Plans

Conclusions and Future Plans

• Conclusions:

- First step towards predicting performance of passive decay heat removal system of FHRs
- Excellent agreement with analytical solutions and experimental data in laminar regime
- Reasonable agreement with analytical solutions and experimental data in transition regime
- Overprediction of natural circulation mass flow rates in transition regime, probably due to a discrepancy between friction factor correlations as implemented in the code and what they actually are in the experimental loop

• Future work:

- Collect additional data with better accuracy
- Use current data as calibration data for future models
- Find way to implement alternate friction factor correlations in laminar and transition regime
- Code-to-code comparisons with other system codes (Flownex)

Questions? Suggestions?

