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Introduction and Outline 

Introduction:  Global Threat Reduction Initiative (GTRI) 

 Led by National Nuclear Security Administration (NNSA)  

 US Government Highly Enriched Uranium (HEU) minimization effort 

 Program includes: 

 Design and safety analyses – define LEU element, produce licensing case 

 Development of advanced Low Enriched Uranium (LEU) fuels 

 Mo-99 production technology development 

 Successful HEU to LEU fuel conversion for many research reactors around the world.  
 

Outline:  This presentation 

1. SCK-CEN Belgian Reactor 2 (BR2) 

2. Institut Laue-Langevin (ILL) High Flux Reactor (RHF) 

 Reactor description 

 RELAP5 model 

 Loss-of-flow / offsite-power simulations 

 Summary 
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BR2 Research Reactor 
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BR2 Reactor Core 
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BR2 Reactor Core 

Conversion Strategy 

1. Empirically calibrate RELAP5 model to 1962 BR2 and mock-up facility hydraulic data 

2. Apply model to 1963 loss-of-flow experiments and reproduce peak cladding temperatures 

3. Extend model to current representative core (31 fuel elements) 

4. Repeat accident scenarios with HEU and LEU fuel to simulate conversion impact on safety.  
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Reactor Core model 

Reduce 79 channels into 4 relevant RELAP5 channels 

1. Limiting fuel element (high heat flux) 

2. Remaining fuel elements 

3. Remaining channels (plugged channel) 

4. Core bypass 
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Reactor Vessel Model 

Channel contents 

Averaged into 6 axial segments 

 

Crossflow paths 

100’s of ~6mm diameter holes 

 

Flow distribution at 2.1 kg/cm2 

           Bypass = 360.0 kg/s 

Fuel element = 35.7 kg/s 

   Control rod = 7.4 kg/s 

                Plug = 2.25 kg/s 

 

Pressure distribution 

Core dP 

Vessel dP 

Other locations 
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Reactor Vessel and Core Calibration 

 Empirically calibrated to available data 

 Excellent agreement for core DP 

 Almost excellent agreement for vessel DP 
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Pump Coast Down 

 Torque friction adjusted to match measured flow rate. 

 Measurement data assumed to be unreliable below 10% of flow. 
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1963 Loss-of-Flow Experiments / Simulations 

Test A (loss-of-flow) 

– 400 W/cm2 

– Natural circulation valve open 

Test C (loss-of-flow) 

– 600 W/cm2 

– Natural circulation valve open 

Test F (loss-of-flow, loss-of-pressure) 

– 400 kW/cm2 

– Natural circulation valve open 

– Relief valve open 
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Fuel Cladding Temperature (Test A) 

 Good agreement at steady state 

 Good agreement in magnitude of peak cladding temperature 

 Similar agreement for Tests C and F 
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BR2 Summary 

Presentation 

 RELAP5 model developed for BR2 reactor vessel 

 Model empirically calibrated to reactor and hydraulic mock -up 
facility data 

 Applied model to 1963 core configuration  (15 fuel elements) 
and successfully reproduced loss of flow and loss of pressure 
experiments. 

 

Ongoing work 

 Extending model to current representative core (31 fuel 
elements) and repeating accident scenarios with HEU and LEU 
fuel to simulate conversion impact on safety.  
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RHF Research Reactor  58.3 MW thermal 

 Heavy water cooled /  moderated 
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~735 kg/s 

~30 kg/s 

~1.5 kg/s 

~1bar 

~12bar 

~4bar 

 RELAP5 simulations to verify/support CATHARE simulations 



RELAP5 RHF Model 
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~12bar 
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RELAP5 Heavy Water Tank Model 
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~12bar 

~4bar 

 Axisymmetric view of heavy water tank 



Fuel element 

One fuel element: 280 involute plates 

 Axial discretization = 26 segments, 

           24 in heated region 

 5 heat structures 

 1 and 4 coolant volumes 
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Measured data 
 Normal operation flow and pressure distribution.  Good agreement. 

 Transient primary loop pressure, crab loop flow.  These are model inputs. 

 Valve timing for unheated loss-of-offsite-power test.  ~Calibration 

 Pump coast down. ~Calibration 

 Comparison to previous CATHARE model simulations  
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Flow Reversal and Peak Cladding Temperature 

 Good agreement between CATHARE and RELAP5 

 Oscillations at peak due to void generated during flow reversal  

 Oscillations after peak due to saturated coolant 
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Preliminary Loss-of-Offsite-Power Simulation 

Results for flow distribution in reference HEU core. 
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Minor Loss Coefficients and Tee’s 
Location of Natural Circulation 
Piping 

Maximum flow (kg/s) Long term flow, 800 s (kg/s) 

CATHARE RELAP5 CATHARE RELAP5 

Primary Piping 60 35 4.34 2.7 

Chimney 80 32 2.9 1.8 

CRAB 15 15 -1 ~0 
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Natural Circulation Flow 
 RELAP5 < CATHARE Model 

 
 CATHARE model doesn’t 

include kloss for Tee’s 
 

 kloss for Tee’s significant 
contribution to simulation 
differences. 
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RHF Summary 

Presentation 

 Description of RELAP5 model 

 Results for preliminary loss-of-offsite-power simulation with HEU fuel 

 Similar results (not shown) for both HEU and LEU core 

 Natural circulation flow dependent on minor loss coefficients at tee junctions 

 

Ongoing work 

 Working towards a finalized model... 

 Identifying key simulations to perform 

 End result is to support/confirm CATHARE code simulations. 
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Thank You 

Questions? 
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