

Application of RELAP5 to the BR2 and RHF Research Reactors for the GTRI Fuel Conversion Project

Jeremy Licht

Argonne National Laboratory

September 11-12, 2014

Introduction and Outline

Introduction: Global Threat Reduction Initiative (GTRI)

- Led by National Nuclear Security Administration (NNSA)
- US Government Highly Enriched Uranium (HEU) minimization effort
- Program includes:
 - Design and safety analyses define LEU element, produce licensing case
 - Development of advanced Low Enriched Uranium (LEU) fuels
 - Mo-99 production technology development
- Successful HEU to LEU fuel conversion for many research reactors around the world.

Outline: This presentation

- 1. SCK-CEN Belgian Reactor 2 (BR2)
- 2. Institut Laue-Langevin (ILL) High Flux Reactor (RHF)
 - Reactor description
 - RELAP5 model
 - Loss-of-flow / offsite-power simulations
 - Summary

Argonne National Laboratory, IRUG 2014

BR2 Research Reactor

BR2 Reactor Core

1963 Core Configuration

Current Representative Core Configuration

BR2 Reactor Core

1963 Core Configuration

Conversion Strategy

- 1. Empirically calibrate RELAP5 model to 1962 BR2 and mock-up facility hydraulic data
- 2. Apply model to 1963 loss-of-flow experiments and reproduce peak cladding temperatures
- 3. Extend model to current representative core (31 fuel elements)
- 4. Repeat accident scenarios with HEU and LEU fuel to simulate conversion impact on safety.

Current Representative Core Configuration

Reactor Core model

Reduce 79 channels into 4 relevant RELAP5 channels

- 1. Limiting fuel element (high heat flux)
- 2. Remaining fuel elements
- 3. Remaining channels (plugged channel)
- 4. Core bypass

Limiting fuel element

10° hot stripe

Reactor Vessel Model

<u>Channel contents</u> Averaged into 6 axial segments

100's of ~6mm diameter holes

Crossflow paths

Flow distribution at 2.1 kg/cm² Bypass = 360.0 kg/s Fuel element = 35.7 kg/s Control rod = 7.4 kg/s Plug = 2.25 kg/s

Pressure distribution Core dP Vessel dP Other locations

Reactor Vessel and Core Calibration

- Empirically calibrated to available data
- Excellent agreement for core ΔP
- Almost excellent agreement for vessel ΔP

Pump Coast Down

- Torque friction adjusted to match measured flow rate.
- Measurement data assumed to be unreliable below 10% of flow.

1963 Loss-of-Flow Experiments / Simulations

Test A (loss-of-flow)

- 400 W/cm²
- Natural circulation valve open

Test C (loss-of-flow)

- 600 W/cm²
- Natural circulation valve open

Test F (loss-of-flow, loss-of-pressure)

- 400 kW/cm²
- Natural circulation valve open
- Relief valve open

Power Split

		Transient		
Region	Steady State	0.1s	25s	50s
Fuel	0.959	0.824	0.744	0.718
Beryllium	0.026	0.112	0.163	0.180
Other	0.015	0.064	0.093	0.103

Fuel Cladding Temperature (Test A)

- Good agreement at steady state
- Good agreement in magnitude of peak cladding temperature
- Similar agreement for Tests C and F

BR2 Summary

Presentation

- RELAP5 model developed for BR2 reactor vessel
- Model empirically calibrated to reactor and hydraulic mock -up facility data
- Applied model to 1963 core configuration (15 fuel elements) and successfully reproduced loss of flow and loss of pressure experiments.

<u>Ongoing work</u>

 Extending model to current representative core (31 fuel elements) and repeating accident scenarios with HEU and LEU fuel to simulate conversion impact on safety.

RELAP5 RHF Model

RELAP5 Heavy Water Tank Model

Axisymmetric view of heavy water tank

Fuel element

One fuel element: 280 involute plates

- Axial discretization = 26 segments,
 24 in heated region
- 5 heat structures
- 1 and 4 coolant volumes

Measured data

- Normal operation flow and pressure distribution. <u>Good agreement</u>.
- Transient primary loop pressure, crab loop flow. <u>These are model inputs.</u>
- Valve timing for unheated loss-of-offsite-power test. ~<u>Calibration</u>
- Pump coast down. ~<u>Calibration</u>
- Comparison to previous CATHARE model simulations

Flow Reversal and Peak Cladding Temperature

- Good agreement between CATHARE and RELAP5
- Oscillations at peak due to void generated during flow reversal
- Oscillations after peak due to saturated coolant

Preliminary Loss-of-Offsite-Power Simulation

Results for flow distribution in reference HEU core.

Minor Loss Coefficients and Tee's

Location of Natural Circulation	Maximum flow (kg/s)		Long term flow, 800 s (kg/s)	
	CATHARE	RELAP5	CATHARE	RELAP5
Primary Piping	60	35	4.34	2.7
Chimney	80	32	2.9	1.8
CRAB	15	15	-1	~0

Natural Circulation Flow RELAP5 < CATHARE Model

- CATHARE model doesn't include k_{loss} for Tee's
- k_{loss} for Tee's significant contribution to simulation differences.

RHF Summary

Presentation

- Description of RELAP5 model
- Results for preliminary loss-of-offsite-power simulation with HEU fuel
- Similar results (not shown) for both HEU and LEU core
- Natural circulation flow dependent on minor loss coefficients at tee junctions

Ongoing work

- Working towards a finalized model...
- Identifying key simulations to perform
- End result is to support/confirm CATHARE code simulations.

Thank You Questions?

Argonne National Laboratory, IRUG 2014