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Overview
• High Temperature Test Facility (HTTF) description
• Recent RELAP5-3D analyses
• Future plans
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High Temperature Test Facility highlights
• Integral experiment being built at Oregon State University
• 2.2 MW electrically-heated, scaled model of a high temperature gas 

reactor
– Reference is the Modular High-Temperature Gas-cooled Reactor 

(MHTGR) (prismatic blocks)
– Large ceramic block representing core and reflectors 
– ¼ length scale
– Prototypic coolant inlet (259°C) and outlet (687°C) temperatures
– Less than scaled power
– Maximum pressure of ~700 kPa

• Primary focus is on depressurized conduction cooldown transient
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HTTF RELAP5-3D Input Model Description

• Four systems
– Primary coolant
– Secondary coolant
– Reactor cavity
– Reactor cavity cooling system (RCCS)

• Central and side reflector regions divided into regions with or without 
coolant holes

• 2-D (radial/axial) conduction in all vertical heat structures
• Heater block unit cell centered on the coolant channel
• Radial conduction and radiation inside core barrel
• Radiation from core barrel to vessel to RCCS
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Reactor Vessel Nodalization
• Multiple flow paths through core

– Three heated channels
– Central reflector
– Side reflector

• Gaps on either side of permanent 
side reflector not flow-through

• Riser annulus between core barrel 
and pressure vessel

• No coolant between upper plenum 
shield and upper head
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HTTF RELAP5-3D Core Region Radial Nodalization
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HTTF Ex-vessel Nodalization
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Steady state scoping calculations
• Effect of reduced power
• Effect of reduced pressure
• Maintain nominal coolant inlet and outlet temperatures
• Can a representative core temperature distribution be maintained?
• Can operational costs be reduced?
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Effect of primary coolant system pressure

700 kW 2200 kW
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Effect of power on axial average temperatures
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Effect of power on core block 2 temperatures
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Effect of power on core block 6 temperatures
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Effect of power on core block 10 temperatures
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Depressurized conduction cooldown transient
• 5-s forced flow coastdown
• System depressurization valve opened at 3 s
• At 20 s

– System depressurization valve closed
– Hot and cold duct break valves opened
– Loop isolation valve closed

• Scram assumed at transient initiation (0 s)
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Core ceramic temperature response
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Central reflector temperature response
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Side reflector temperature response
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Outer structure temperature response
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How low can the power go?
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Summary of results
• System pressure had little effect on core temperature distribution
• In general, decreasing power at steady state

– Increased the central reflector temperatures
– Reduced the core temperatures
– Reduced the side reflector temperatures

• Lower power resulted in lower temperatures during the depressurized 
conduction cooldown transient

– Effect not as large as in initial temperature difference
– Decay power is the same in all cases

• Reduced power operation may be viable for many cases
– Lower electricity cost
– Less water usage

• Model must still be benchmarked!
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Future plans
• Update model when final drawings and component information is 

available
• Benchmark model using system characterization test data
• Perform assessment calculations using transient test data
• Provide operational support analyses as needed
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