Variable Gravity

Dr. George Mesina

RELAP5 International Users Seminar Idaho Falls, ID
September 11-12, 2014

Outline

- Uses
- Theory
- Description of Motion
- Input

Uses for Variable Gravity

- The gravitational constant can be input to represent reactors/systems in non-accelerating conditions
- Lunar or a planetary w/ non-earth gravity
- Space station
- Probes and spacecraft outside Earth orbit
- Additional changes are required to represent systems in a non-inertial frame of reference
- Earthquake scenarios
- Aircraft and watercraft
- Off-shore power plants (E.G. MIT floating reactor)

Moving System Theory

- "Craft" has rotational and translational acceleration
- No effect on continuity or energy equation
- Accelerations affect momentum equation
- They are added to gravitational acceleration to obtain an "effective gravity" vector
$\frac{\partial \rho v}{\partial t}+(v \cdot \nabla) \rho v=-\nabla P+\nabla \cdot \llbracket \tau \rrbracket+\rho\left(g-a_{a c c}\right)$

```
P = pressure
V = velocity
R = density
\llbracket|\rrbracket = shear stress tensor
```

Need to express acceleration vector in terms of translating and rotating reference frame

Moving System Theory

- Metacenter frame is attached to the center of the craft
- It is a non-inertial frame
- $\mathrm{a}_{\mathrm{acc}}$ is the translational \& rotational acceleration of the Metacenter frame

Moving System Theory

Metacenter Axes

- \mathbf{x}^{\prime}-axis: along craft's direction of motion forward is positive
- y^{\prime}-axis: transverse to x-axis. Facing forward, left is positive
- z^{\prime}-axis: vertical of craft: up is positive
$\omega=$ Rotation vector of Metacenter frame about \mathbf{O}_{M}
Position of point on power plant, $\mathrm{P}(\mathrm{t})$
Relative position vectors
- Relative (to O_{P}), $\underline{\mathrm{r}}(\mathrm{t})$
- Relative (to \mathbf{O}_{M}), $\mathrm{r}(\mathrm{t})$
- Relative (to O_{I}), $\tilde{r}(\mathbf{t})$

Relate Inertial \& Metacenter Velocity

- Relative center-position vectors
$-O_{P}$ relative to $O_{M}, R(t)$
- O_{M} relative to $O_{I}, \widetilde{R}(t)$
- Inertial frame

$$
\begin{aligned}
& -\widetilde{r}(t)=\widetilde{R}(t)+r(t) \\
& -\tilde{r}(t)=\frac{d \widetilde{R}}{d t}+\frac{d r}{d t}
\end{aligned}
$$

- Metacenter frame
- Unit direction vectors $i^{\prime}, j^{\prime}, k^{\prime}$ in $x^{\prime}-, y^{\prime}$-, z^{\prime}-directions
$-r(t)=x^{\prime} i^{\prime}+y^{\prime} j^{\prime}+z^{\prime} \boldsymbol{k}^{\prime}$
$-\frac{d r}{d t}=\frac{d}{d t}\left[x^{\prime} i^{\prime}+y^{\prime} j^{\prime}+z^{\prime} k^{\prime}\right]$

Inertial Time-derivative of Metacenter Position Vector, r

Product Rule to $\frac{d r}{d t}=\frac{d}{d t}\left[x^{\prime} i^{\prime}+y^{\prime} j^{\prime}+z^{\prime} k^{\prime}\right]$

- $\frac{d r}{d t}=\frac{d x^{\prime}}{d t} i^{\prime}+\frac{d x^{\prime}}{d t} j^{\prime}+\frac{d x^{\prime}}{d t} k^{\prime}+x^{\prime} \frac{d i^{\prime}}{d t}+y^{\prime} \frac{d j^{\prime}}{d t}+z^{\prime} \frac{d k^{\prime}}{d t}$

But the velocity, v, of $\mathrm{P}(\mathrm{t})$ in the Metacenter frame is:

- $v(t)=\frac{D r}{D t}=\frac{d x^{\prime}}{d t} i^{\prime}+\frac{d x^{\prime}}{d t} j^{\prime}+\frac{d x^{\prime}}{d t} k^{\prime}$

From other sources:

- $\omega \times r=x^{\prime} \frac{d i^{\prime}}{d t}+y^{\prime} \frac{d j^{\prime}}{d t}+z^{\prime} \frac{d k^{\prime}}{d t}$

Craft
$\mathrm{O}_{\mathrm{M}} \quad \begin{aligned} & \text { Center of Rotation } \\ & \text { (Metacenter) of Craft }\end{aligned}$ Metacenter Frame

THEOREM

- $\frac{d r}{d t}=\frac{D r}{D t}+\omega \times r=\boldsymbol{v}+\omega \times r$

Inertial \& Metacenter Velocity Relationship

- Substitute: $\frac{d r}{d t}=v+\omega \times r$
- Into: $\widetilde{\boldsymbol{v}}(t)=\frac{d \tilde{r}}{d t}=\frac{d \widetilde{R}}{d t}+\frac{d r}{d t}$
- $\widetilde{\boldsymbol{v}}(\boldsymbol{t})=\frac{d \tilde{r}}{d t}=\frac{d \widetilde{R}}{d t}+v+\omega \times r$

Relate Inertial \& Metacenter Acc.

Inertial: $\widetilde{\boldsymbol{a}}(\boldsymbol{t})=\frac{d \widetilde{v}}{d \boldsymbol{t}}$

- $\widetilde{\boldsymbol{a}}(\boldsymbol{t})=\frac{d}{d t}\left[\frac{d \widetilde{\boldsymbol{R}}}{d \boldsymbol{t}}+\frac{d r}{d t}\right]=\frac{d}{d t}\left[\frac{d \widetilde{\boldsymbol{R}}}{d \boldsymbol{t}}+\boldsymbol{v}+\boldsymbol{\omega} \times \boldsymbol{r}\right]$
- $\widetilde{\boldsymbol{a}}(\boldsymbol{t})=\left[\frac{d^{2} \widetilde{R}}{d t^{2}}+\frac{d v}{d t}+\frac{d(\omega \times r)}{d t}\right]$

Metacenter: $a=\frac{D v}{D t}$

- From THM: $\frac{d r}{d t}=\frac{D r}{D t}+\omega \times r$
- $\frac{d v}{d t}=\frac{D v}{D t}+\omega \times v=a+\omega \times v$
- $\frac{d(\omega \times r)}{d t}=\frac{D(\omega \times r)}{D t}+\omega \times(\omega \times r)$

Relate Inertial \& Metacenter Acc.

Apply the product rule to $\frac{D(\omega \times r)}{D t}$

- $\frac{D(\omega \times r)}{D t}=\frac{D \omega}{D t} \times r+\omega \times \frac{D r}{D t}=\frac{D \omega}{D t} \times r+\omega \times \underline{v}$

Therefore

- $\widetilde{\boldsymbol{a}}(\boldsymbol{t})=\left[\frac{d^{2} \widetilde{R}}{d t^{2}}+\frac{d v}{d t}+\frac{d(\omega \times r)}{d t}\right]$
- $\widetilde{a}(t)=\frac{d^{2} \widetilde{R}}{d t^{2}}+\underline{a+\omega \times v}+\frac{D(\omega \times r)}{D t}+\omega \times(\omega \times r)$
- $\widetilde{\boldsymbol{a}}(t)=\frac{d^{2} \widetilde{R}}{d t^{2}}+a+\omega \times v+\frac{D \omega}{D t} \times r+\omega \times v+\omega \times(\omega \times r)$

Relate Inertial \& Metacenter Acc.

- $\widetilde{\boldsymbol{a}}(t)=\frac{d^{2} \widetilde{R}}{d t^{2}}+a+2 \omega \times v+\frac{D \omega}{D t} \times r+\omega \times(\omega \times r) \quad$ Eq. A
- Denote translational motions surge, drift and heave by \ddot{x}, \ddot{y} and \ddot{z}

$$
\text { - } \frac{d^{2} \widetilde{R}}{d t^{2}}=\ddot{x} i+\ddot{y} j+\ddot{z} k
$$

- Within the craft's moving frame, $a=0$
- If v and ω are given, Eq. A is a set of 3 coupled, $2^{\text {nd }}$ order, linear ordinary differential equations
- Solving this gives acceleration of the moving particle
- In the momentum equation: $a_{a c c}=\widetilde{a}(t)-a$

Functions of Time

- Translation directions are functions of time
- The rotation vector angles are also functions of time
- RELAP5-3D allows two sets of angle data for rotation
- Pitch-yaw-roll : (γ, β, α)
- Euler angles: ($\varphi, \boldsymbol{\theta}, \Psi$)

Pitch-Yaw-Roll Angle Specification

a) Pitch: angular displacement γ about the inertial y-axis - Pitch forward (and back)
b) Yaw: angular displacement β about the new z-axis (z^{\prime}-axis) - Twist (like a bottle cap)
c) Roll: angular displacement α about metacenter x -axis (x"-axis)

- Roll like a barrel (about longitudinal axis)

Pitch-Yaw-Roll Angle Specification

Elementary Rotation Matrices \& coordinates
$E_{P}=\left[\begin{array}{ccc}\cos \gamma & 0 & -\sin \gamma \\ 0 & 1 & 0 \\ \sin \gamma & 0 & \cos \gamma\end{array}\right], X^{\prime}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=E_{P} X=E_{P}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
$E_{Y}=\left[\begin{array}{ccc}\cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1\end{array}\right], X^{\prime \prime}=\left[\begin{array}{c}x^{\prime \prime} \\ y^{\prime \prime} \\ z^{\prime \prime}\end{array}\right]=E_{Y} X^{\prime}$

$E_{R}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right], X^{\prime \prime \prime}=\left[\begin{array}{l}x^{\prime \prime \prime} \\ y^{\prime \prime \prime} \\ z^{\prime \prime \prime}\end{array}\right]=E_{R} X^{\prime \prime}$

- $X^{\prime \prime \prime}=E_{R} E_{Y} E_{P} X$ and $X=\left[E_{R} E_{Y} E_{P}\right]^{T} X^{\prime \prime \prime}$

Euler Angle Specification

- $1^{\text {st }}$ Euler angle, φ, rotates about the inertial z-axis

$$
E_{\varphi}=\left[\begin{array}{ccc}
\cos \varphi & \sin \varphi & 0 \\
-\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right], X^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=E_{\varphi} X=E_{\varphi}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

- $2^{\text {nd }}$ Euler angle, θ, rotates about the new x^{\prime}-axis
$E_{\theta}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta\end{array}\right], X^{\prime \prime}=\left[\begin{array}{l}x^{\prime \prime} \\ y^{\prime \prime} \\ z^{\prime \prime}\end{array}\right]=E_{\theta} X^{\prime}$
- $3^{\text {rd }}$ Euler angle, ψ, rotates about the new z '"-axis
$\boldsymbol{E}_{\psi}=\left[\begin{array}{ccc}\cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1\end{array}\right], X^{\prime \prime \prime}=\left[\begin{array}{l}x^{\prime \prime \prime} \\ \boldsymbol{y}^{\prime \prime \prime} \\ \boldsymbol{z}^{\prime \prime \prime}\end{array}\right]=\boldsymbol{E}_{\psi} \boldsymbol{X}^{\prime \prime}$
- $X^{\prime \prime \prime}=E_{\psi} E_{\theta} E_{\varphi} X \quad$ and $\quad X=\left[E_{\psi} E_{\theta} E_{\varphi}\right]^{T} X^{\prime \prime \prime}$

Input: Fixed/Moving Option

- RELAP5-3D can be used for a system fixed in space or a system that rotates and/or translates
- For stationary systems, Word 2 on Card 119 is entered as FIXED
- If this word is not entered, a fixed problem is assumed
- For systems that rotate and/or translate, Word 2 on Card 119 is MOVING

Rotational and Translational Input

- Card 190 specifies type of transient rotational angle
- Euler angles or pitch-yaw-roll angles
- Cards 191-193 specify transient rotational angles as a function of time
- Amplitude (A)
- Period (B)
- Phase angle (C)
- Offset angle (D)
- Constant part of rotational speed (E)
$-E . G . \gamma=A \sin (2 \pi[t / B+C / 360])+D+E t$

Rotational and Translational Input

- Cards 194 - 196 specify displacement in the $x-, y$-, and z-directions (respectively) as a function of time
- Amplitude (A)
- Period (B)
- Phase angle (C)
- E.G. $y=A \sin (2 \pi(t / B+C / 360])$
- Cards 2090NXXX specify translational displacement and rotational angle tables as a function of time
- This information is added to information already entered on Cards 191-196

Hydrodynamic Input

- Cards 120-129 specify a reference volume in the hydrodynamic system (one card for each system)
- Each card also allows specification of x, y, and z coordinates of the reference volume relative to fixed (inertial, world) $x-, y-$, and z-axes
- Any rotation is assumed to be about the origin implied by the reference volume
- The origin is the initial metacenter of the craft
- Hydrodynamic component-specific cards allow input of position change along fixed (world, inertial) x -, y -, and z -axes due to traverse from inlet to outlet along the local $\mathrm{x}-, \mathrm{y}$-, z -axes
- There are 9 combinations (xx, yx, zx, xy, yy, zy, xz, yz, zz)

Hydrodynamic Input (continued)

- These 9 combinations are used to obtain loop closure in the x, y, and z coordinate directions
- Loop closure is required in all three directions for MOVING problems
- Failure to close in an initially horizontal direction could cause a failure to close in a vertical direction after rotation
- FIXED problems are easier to input than MOVING problems
- They require loops to close in the z-direction only

Summary

- RELAP5-3D has a moving system capability
- Model fixed or moving reactors that may undergo acceleration due to translation and/or rotation
- The acceleration affects the momentum equation as an effective gravitation acceleration vector
- RELAP5-3D has two sets of rotation angles
- Pitch/yaw/roll and Eulerian
- There are numerous input options for specifying the reference location and time-dependent data

