RELAP-7 Code Development Status Update

Presented by Hongbin Zhang, Ph.D.

IRUG Meeting September 11, 2014

www.inl.gov

Idaho National

Laboratory

RELAP-7 Team:

- Theory: Ray Berry Richard Martineau
 Simulation: Hongbin Zhang Haihua Zhao Ling Zou
- Framework: David Andrs
- Collaborators: Rui Hu ANL Steve Hess - EPRI Gregg Swindlehurst - EPRI

RELAP-7 Overview

- RELAP-7 is the next generation nuclear reactor system safety analysis code
- The code is being developed based upon the MOOSE (Multi-Physics Object-Oriented Simulation Environment) framework: continuous finite element method (CFEM), fully coupled components with implicit solver, mesh and time adaptivity, parallel software
- Fully implicit solver achieved by *Jacobian-Free Newton Krylov (JFNK) method* (MOOSE's main solver).
- 2nd-order accurate temporal and spatial discretization (reduces the traditional numerical errors)
- Flexibility in fluids models: single phase, homogeneous equilibrium model (HEM), 7-equation two-phase flow model, drift flux models (future)
- Ability to couple to multi-dimensional reactor simulators through MOOSE
- Main reactor systems simulation toolkit for LWRS (Light Water Reactor Sustainability) program's RISMC (Risk Informed Safety Margin Characterization) pathway

Risk-Informed Safety Margin Characterization (RISMC) Pathway

Support plant decisions for risk-informed margins management to support improved economics, reliability, and sustain safety of current nuclear power plants

Goals of the RISMC Pathway:

- Develop and demonstrate a riskassessment method coupled to safety margin quantification that can be used by nuclear power plant decision makers as part of their margin recovery strategies
- Create an advanced "RISMC toolkit" that enables more accurate representation of nuclear power plant safety margins

Components Completed

Component Name	Descriptions	
Pipe	1-D fluid flow within 1-D solid structure with wall friction and heat transfer	
PipeWithHeatStructure	Simulating 1-D pipe fluid flow coupled with 1-D/2-D conduction through the pipe wall; can take Adiabatic, Dirichlet, or Convective boundary conditions at the outer surface of the pipe wall	
CoreChannel	Simulating flow channel and fuel rod thermal hydraulics, including 1-D fluid flow and fuel rod heat conduction for either plate type or cylinder type of fuel	
HeatExchanger	Co-current or counter-current heat exchanger model, including fluid flow in two sides and heat conduction through the solid wall	
Subchannel	Simulating 3-D channel flow with 1-D/2-D fuel rod heat conduction	

6

Components Completed

Component Name	Descriptions	
TimeDependentVolume	Time Dependent Volume to set pressure and temperature boundary conditions	
TimeDependentJunction	Time Dependent Junction to set velocity and temperature boundary conditions	
TDM	Time Dependent Mass flow rate (TDM) to set mass flow rate and temperature boundary conditions	
Branch	Multiple in and out 0-D volume/junction, which provides form loss coefficients (K), for either isothermal flow or non-isothermal flow	
Pump	Simple pump model to provide a head and reverse flow form loss coefficients (K), for either isothermal flow or non-isothermal flow	
Valve	Simulate control mechanisms of real valves in a hydrodynamic system	
CompressibleValve	Simulate valve open and close behavior for compressible flow, including choking for single-phase gas; can be used as safety relief valve (SRV)	
CheckValve	Simulate the check valve behavior with the form loss calculated by the abrupt area change model	

Components Completed (Continuation)

Component Name	Descriptions	
DownComer	Large volume to mix different streams of water and steam and to track the water level	
Turbine	A simplified dynamical turbine model to simulate a reactor core isolation cooling (RCIC) turbine, which drives the RCIC pump through a common shaft	
WetWell	Simulate a BWR suppression pool and its gas space	
SeparatorDryer	Separating steam and water with mechanical methods, 1 in and 2 outs, 0-D volume	
PointKinetics	0-D point kinetic neutronics model to simulate reactor kinetics and decay heat generation	
Pressurizer	Simulate pressurizer dynamic behaviors with the 3-zone model.	
Reactor	A virtual component that allows users to input the reactor power	

Simulation Capability Demonstration

BWR SBO with RCIC and SRV Systems Dynamically Modeled and Fully Coupled

Fukushima Accident Timeline (SAND2012-6173)

BWR SBO Scenario – Fully Coupled RCIC & SRV Systems

RCIC Turbine Shaft Work

Reactor Vessel Pressure

DownComer Liquid Level

Average Core Void Fraction

Peak Clad Temperature

Wet Well Suppression Pool Temperature

Key Takeway Points

- The behavior of safety components, such as RCIC and SRV systems, under BDA is not well understood. However, such behaviors must be understood to provide risk assessment to ensure plant safety post Fukushima era.
- RELAP-7 (designed as a RISMC ready tool) has the opportunity to answer such questions through fully implicit, fully coupled, higher fidelity and dynamic modeling and simulation of safety components.
- Our simulations indicate such simulations are doable.
- This kind of simulations would reduce the uncertainties associated with user's experience which normally assumes certain boundary conditions in the analysis such as assuming RCIC turbine & pump mass flow rates, etc.
- In RELAP-7, we are working toward higher fidelity models and enhanced capability (e.g. UQ for all the models and parameters) to enable RISMC analysis.

RELAP-7 Timeline

FY 2012	FY 2013	FY 2014	FY 2015 and beyond
 - 3 equation single phase - Heat structures - Basic components 	-HEM & 7 equation two phase flow - Additional relevant components and physics for SBO	 Develop the full set of components to perform SBO for a BWR Prepare the code for the initial beta release 	 Develop and upgrade closure laws. Improve physical modeling of equation parameters Extend the number of available components
Steady state PWR simulation	simulation on simplified system with relevant components	 Initial beta release Refined BWR SBO 	- Comprehensive Verification & Validation (V&V) & Uncertainty Quantification (UQ)
			- Delivering a large set of validating benchmarks

Multi-Dimensional Capability

Idaho National Laboratory

The National Nuclear Laboratory

