Modeling Moving Systems with RELAP5-3D

Frank Buschman
Dave Aumiller
Matt Kyle

IRUG 2015
August 13-14, 2015
Outline

• Background
 – Purpose
 – Refresher on moving problem theory

• Quantitative Verification
 – Translation Verification Problem
 – Calculation of Acceleration
 – Resultant Body Force

• Qualitative Assessment
 – Rotational
 – Translation

• Conclusions
Purpose

• Demonstrate ability to simulate moving systems with RELAP5-3D
• Demonstrate quantitative verification of code calculated accelerations due to translational displacement
• Demonstrate quantitative verification of code calculated pressure change due to acceleration
• Qualitative assessment of simple U-tube like geometry under rotational and translational motion
• Show similarity in results from rotational and translational sample problems
Modeling moving systems

• Moving system theory and input presented by Dr. Messina last year

• Only momentum equations are modified to account for system motion
 – Thermal energy equations do not include potential or mechanical energy

• System motion is accounted for with an additional body force term
 – Modifies the apparent acceleration due to gravity

• User can input system motion as rotation or translation of (or about) the metacenter
 – Motion can be input using functional forms or tables
Quantitative Verification

• Independent calculation of the body accelerations in 3-dimensions
 – Translational accelerations are separable
 – Each direction of body motion can be aligned with streamwise direction

• Independent calculation of resultant pressure difference due to accelerations
 – Calculation of pressure change from acceleration is independent of type of motion causing the acceleration
 – Verification for translation is valid for rotation
Translation Verification

- Interconnected rectangular prism
 - 3x3 square array of pipes
 - Each pipe is 5 volumes long
 - Multiple junctions used for transverse connections

- Sinusoidal forcing functions applied in each direction

\[
x(t) = 38.1m \sin\left(2\pi \frac{t}{10.0s}\right) \\
y(t) = 152.4m \sin\left(2\pi \frac{t}{10.0s}\right) \\
z(t) = 72.6m \sin\left(2\pi \frac{t}{10.0s}\right)
\]
Translation Verification

• Verification of accelerations
 – Analytic solution by taking second derivative of displacement with respect to time

\[a_x(t) = \frac{d^2x}{dt^2} = -\frac{4 \pi^2}{(10.0s)^2} (38.1m) \sin \left(2\pi \left[\frac{t}{10.0s} \right] \right) \]

\[a_y(t) = \frac{d^2y}{dt^2} = -\frac{4 \pi^2}{(10.0s)^2} (152.4m) \sin \left(2\pi \left[\frac{t}{10.0s} \right] \right) \]

\[a_z(t) = \frac{d^2z}{dt^2} = -\frac{4 \pi^2}{(10.0s)^2} (72.6m) \sin \left(2\pi \left[\frac{t}{10.0s} \right] \right) \]

– Pressure change due to acceleration is given as:

\[dp = \frac{1}{2} (\rho_K + \rho_L) a_{acc} \frac{1}{2} (L_K + L_L) \]
Translation Verification
Translation Verification

Verification of Translation Acceleration

- X-direction
- Y-direction
- Z-direction
- X-direction Analytic
- Y-direction Analytic
- Z-direction Analytic

Differential Pressure (Pa)

Time (s)

9/1/2015
Translation Verification

Verification of Pressure Change due to Translation

Verification of Acceleration due to Translation
Qualitative Assessment

• Rotational Sample Problem
 – One pipe component and one single junction
 – Formed into a square
 – Equilibrium level at midpoint of vertical legs
 – Top leg of square is 4 meters below center of rotation
 – Rotates according to:
 \[\theta(t) = 20^\circ \sin \left(2\pi \left(\frac{t}{10s}\right)\right) \]
Rotational Sample Results

- Figure shows difference between collapsed level for middle vertical volume in the right (blue) and left (green) legs
- Deviation from zero is due to inertial effects
- Figure shows hysteresis effects
Rotational Sample Results
Rotational Sample Results
Rotational Sample Results

• Sensitivity to increased gravity
 – Gravitational constant doubled
 – Deviation from equilibrium is reduced
 – Increased gravity trying to maintain same level
Translation Sample Problem

• Same geometry as rotational sample problem
 – One pipe and one single junction forming a square
 – Equilibrium level at midpoint of vertical legs
 – X-direction displacement according to:

\[x(t) = 1.4m \sin\left(2\pi \frac{t}{10s}\right) \]

 – Displacement function selected to maximize similarity with rotational sample problem
 • Amplitude of oscillations matches the arc length of the rotational problem
 • Same period as rotational sample problem
Translational Sample Results

• Hysteresis is greatly reduced
 – No vertical acceleration
• Deviation at extremes of oscillation compare well to rotational sample problem
Conclusions

• Quantitative verification of acceleration due to translational motion is demonstrated

• Quantitative verification of pressure change due to modified body force due to acceleration is demonstrated

• Qualitative assessment of simple geometry under rotational and translational motion is provided
 – Hysteresis effects are amplified by vertical component of acceleration in rotational problem

• Similarities in displacements in rotational and translational sample problems are shown