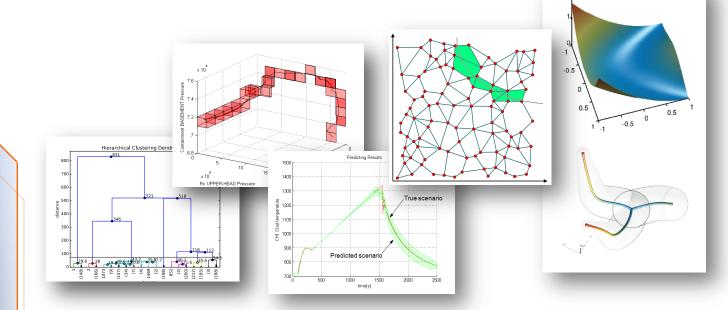
Accident Tolerant Fuels: A PRA Comparison


D. Mandelli, C. Parisi, N. Anderson, Z. Ma and H. Zhang

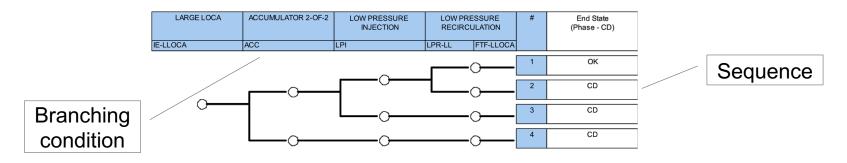
diego.mandelli@inl.gov

www.inl.gov

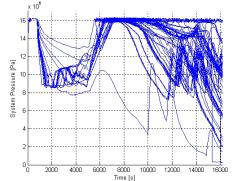
Idaho National

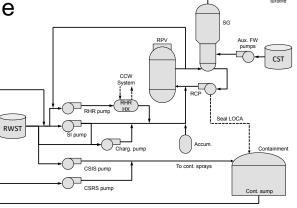
Laboratory

IRUG Meeting – Idaho Falls, April 18th 2019


Introduction

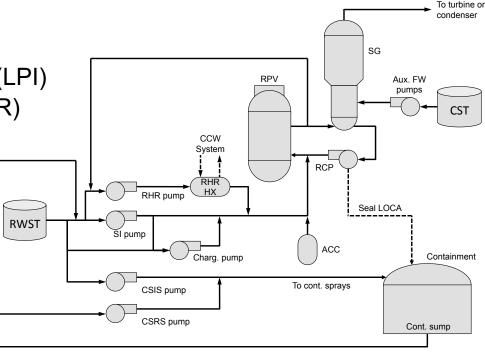
- Accident Tolerant Fuel (ATF) goals: withstand accident scenarios with better performances than currently employed fuels
 - E.g., smaller hydrogen generation
- LWRS RISA research on ATF
 - "Plant-Level Scenario-Based Risk Analysis for Enhanced Resilient PWR SBO and LBLOCA", INL Technical Report INL/EXT-18-51436 (2018)
- Objective: evaluate and compare ATF performances
 - Metric: Probabilistic Risk Assessment (PRA) centric
- Approach: blend of Classical and Dynamic PRA methods
 - Integrate Dynamic PRA results into existing Classical PRA




Classical and Dynamic PRA

- Classical PRA: based on static Boolean structures
 - Event-Trees (ET): inductively model accident progression

- Dynamic PRA: simulation-based methods that couple
 - System simulator codes (e.g., RELAP5-3D)
 - Stochastic tools (e.g., RAVEN)



To steam

Idaho National Laboratory

Application

- Test case:
 - 3-loop PWR system
 - Large break LOCA (LB-LOCA)
 - Double-ended guillotine (2A)
- Systems considered:
 - Accumulators (ACCs)
 - Low Pressure Injection System (LPI)
 - Low Pressure Recirculation (LPR)
- Fuel types considered:
 - Zr
 - Cr-coated
 - FeCrAl

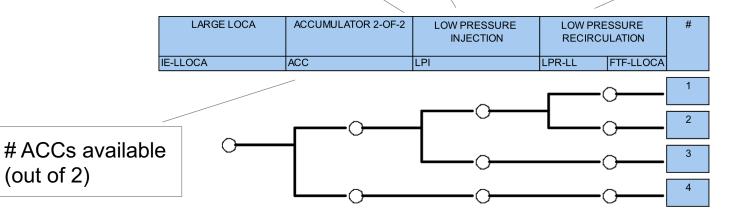
Dynamic PRA: Fuel Models

- ATF fuel-clad oxidation mechanism recently added to RELAP5-3D
- Amount of clad being oxidized and the amount of H₂ produced is calculated at every time step
- Clad deformation and rupture modeled by using a simplified mechanistic model derived from the FRAP-T6 code
- FeCrAl and Cr-coated clad oxidation reactions*

 $2 \text{Al} + 3 \text{H}_2\text{O} \longrightarrow \text{Al}_2\text{O}_3 + 3 \text{H}_2 + 67.3 \text{ MJ/kg mole}$

 $2 \operatorname{Cr} + 3 \operatorname{H}_2 O \longrightarrow \operatorname{Cr}_2 O_3 + 3 \operatorname{H}_2 + 64.84 \operatorname{MJ/kg} mole$

* M. Kurata, "Research and Development Methodology for Practical Use of Accident Tolerant Fuel in LightWater Reactors," *Nuclear Engineering and Technology*, **48**, 1, 26 – 32 (2016).

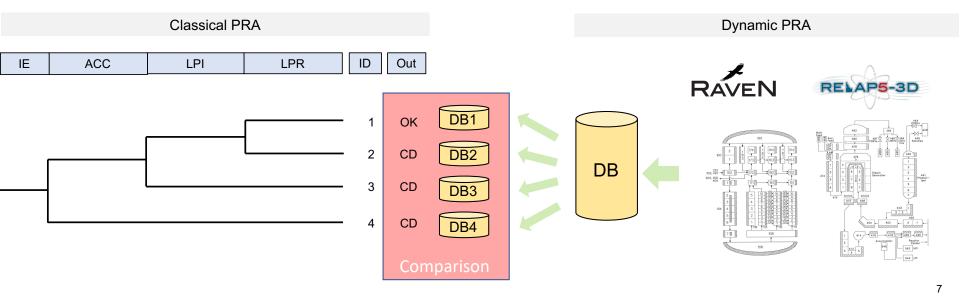


Dynamic PRA: RAVEN

Sampled parameters

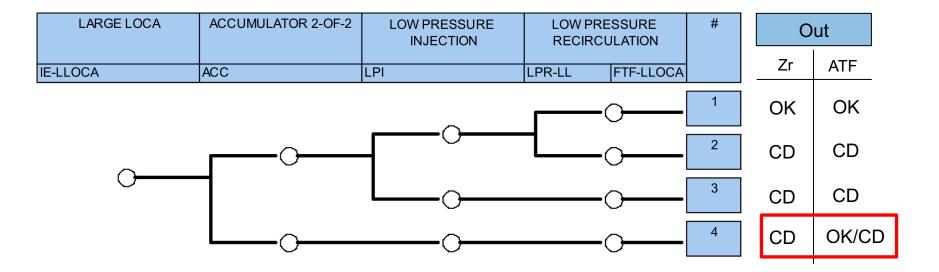
LPI trains available (out of 2) Activation time of the LPI trains

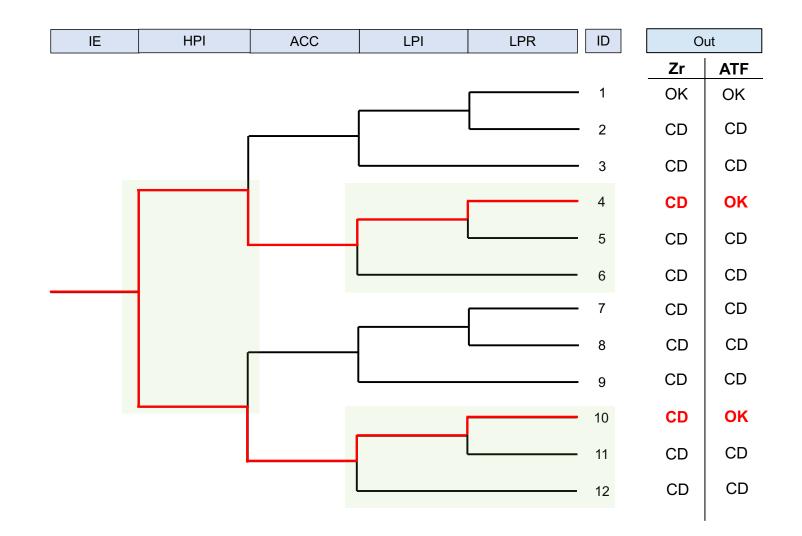
HPI trains available (out of 3) Activation time of the HPI trains # LPR trains available (out of 2) Switch time of the LPR trains



- Output data:
 - Simulation end state (OK or CD)
 - Simulation end time
 - PCT
 - Amount of hydrogen generated

PRA Comparison Methodology


- Set of simulation runs is partitioned into groups
 - One group for each sequence of the Event-Tree
- Process:
 - 1. Identify the link between Event-Tree branching conditions and simulation parameters
 - 2. Associate each simulation to a unique Event-Tree sequence



Results

- Initial analysis shows different fuel performances in Branch 4
- Next step: re-structure the ET to better capture differences
 - Add HPI branching condition
 - Expand branches after ACC failure

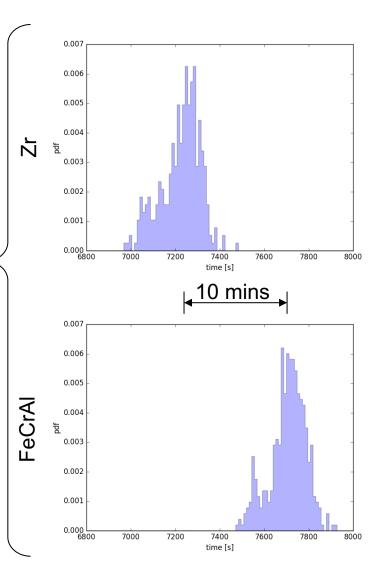
9

Analysis of sequences leading to OK
 PCT

Branch	Zr	Cr	FeCrAl
4	CD	[1250,1450]	[1160,1350]
7	[827,1047]	[1030,1200]	[1040,1250]
10	CD	[1330,1530]	[1200,1400]

- Safety Margins

Branch	Zr	Cr	FeCrAl
4	CD	[350,500]	[450,600]
7	[430,650]	[600,770]	[580,780]
10	CD	[270,430]	[400,550]



Analysis of sequences leading to CD

 Time reach CD

,6750] ,700] ,6700]	[6500,7000] [400,1000] [6600,7050]	[400,700]
,6700]		
· -	[6600,7050]	[6750,7150]
,180]	[250,330]	[350,400]
,7450]	[7200,7600]	[7500,7900]
,395]	[520,600]	[420,620]
,270]	[7300,7800]	[7500,7900]
.2701	380	380
,	395]	.395][520,600].270][7300,7800]

Analysis of sequences leading to CD

- Hydrogen Generation

Branch	Zr	Cr	FeCrAl
2	[3.7,7.5]	[1.,9.]	[0.4,1.2]
3	[0.6,4.]	[0.5,8.]	[0.1,0.9]
5	[1.7,10.]	[1.7,6.]	[0.45,1.]
6	[1.65,2.2]	[1.5,3.]	[0.2,0.65]
8	[1.7,2.2]	[1.7,6.]	[0.4,0.9]
9	[1.85,2.05]	2	0.57
11	[1.5,3.5]	[2.1, 7.2]	[0.4,0.8]
12	1.9	0.5	0.5

Sequence 6: HPI \ACC \LPI \LPR

10 Z odf 1.6 2.0 2.2 2.4 2.6 mass of hydrogen [kg] 60 50 FeCrAI 40 fg 30 20 10

0.40

0.45

mass of hydrogen [kg]

0.50

0.55

0.60

0.65

0.20 0.25

0.30 0.35

Considerations

- Simulation stops when PCT reach failure criterion
 - Zr: 1477 K (2200 F)
 - ATF: 1804 K

Fuel performance code coupled with RELAP5-3D should be employed

Conclusions

- Objective: risk informed analysis of ATF
- Method
 - Classical PRA
 - Accident progression (ET level)
 - Dynamic PRA
 - Simulations generated by RAVEN and RELAP5-3D
 - Sampling parameters informed by ET
- Results
 - Few accident sequences can have in different outcomes
 - ET might required re-structuring (updated success criteria)
 - New sequences
 - New branching conditions