Analysis of Accident Tolerant Fuel Using RELAP5-3D

C. Parisi, Z. Ma, D. Mandelli, N. Anderson, H. Zhang

2019 IRUG Meeting April 18-19, 2019 Residence Inn, 635 West Broadway Idaho Falls, ID, 83402

000

Outline

- LWRS/RISA/ERP Project
- Near-term ATF Technology
- ERP-RA methodology
- RELAP5-3D code M&S
- Application to PWR SBO
- Conclusions

LWRS/RISA/ERP Project

- US DOE Light Water Reactor Sustainability Program (LWRS) Risk-Informed Safety Analysis (RISA) – Enhanced Resilient Plant (ERP) is a multi-years effort led by INL for better characterize the safety margins of the existing US LWR fleet
 - Use RISA methodology and tools
 - Scope: enhance existing reactors active and passive safety features
 - Ultimate goal: increase LWR economics and reliability
- First step of LWRS/RISA/ERP: study the effects of introduction of nearterm Accident Tolerant Fuel (ATF)

Near-term ATF Technology 1/2

- Several ATF technological options being developed: U₂Si₃, Cr-doped UO₂, SiC clads, Cr-coated clads, FeCrAl clads, metallic fuel
- Near-Term ATF: to be introduced in the reactor cores during the next refueling outages (first half of 2020s) by several US electric utilities
- Two technologies investigated by LWRS/RISA/ERP:
 - FeCrAl clad + UO_2 : clad alloy of Fe, Cr, Al (69/21.6/4.9 weight%)
 - Chromium-coated clad + UO₂: coating of tens of um of Zr-clad with Chromium

Near-term ATF Technology 2/2

- Both FeCrAl and Cr-coated clads should provide superior resistance to oxidation by steam at high temperatures
 - reduce the risk of fuel failures
 - reduce H₂ production during accidental transients
 - provide some extra coping time
- Several experiments being carried out in the USA (ATR, ORNL, etc.) for better characterizing the properties of these new materials
- Need to quantify the risk reductions and the safety margin improvements

ERP-Risk Analysis methodology

- ERP-Risk Analysis (RA) methodology uses state-ofthe-art computer codes to perform integrated deterministic-probabilistic analysis
- Starting from a base PRA model, quantify the ΔCDF and ΔLERF derived from the proposed NPP enhancement
- SBO and LBLOCA analyzed in FY2018
- Different PRA methodologies (Dynamic and Classical PRA) and tools used (RAVEN, SAPHIRE)
- RELAP5-3D constitutes the workhorse for the system TH analyses

ERP-RA application

- SBO simulations until core damage by RELAP5-3D → imply modeling of the early phases of the fuel damage
- Need of modifications to RELAP5-3D metal-water reaction model, in order to correctly study the near-term ATF clads
- RELAP5-3D metal-water reaction model is allowing calculation of one (generic) oxidation reaction
 - Card 1CCCG003 (metal-water) to be modified
 - 1CCCG001 (gap conductance) + 1CCG011 (Gap deformation) to be used
- ATF challenges:
 - Two/three different **oxidation reactions** possible
 - FeCrAl and Cr-coating reactions
 - Fe reaction (above a threshold temperature)
 - Zr (internal surface of clad-coated)

 RELAP5-3D metal-water reaction based on a correlation developed by Cathcart et alii, 1977

$$\Delta r^{n+1} = \left[(\Delta r^n)^2 + (K\Delta t)e^{-(\Delta E/RT)} \right]^{1/2}$$

- $-\Delta t$ time step size
- K reaction rate constant
- $-\Delta E$ activation energy
- R gas constant
- T is clad temperature
- Amount of heat added (Q) to the clad surface

$$Q = \rho \pi [(r_o - \Delta r^n)^2 - (r_o - \Delta r^{n+1})^2] \frac{H}{W}$$

- $-r_0$ initial radius of unreacted clad
- H reaction heat release
- W molecular weight of cladding
- $-\rho$, clad density

- Possible oxidation reactions
 - FeCrAI: $2Al + 3H_2O \rightarrow Al_2O_3 + 3H_2 + 67.3 \text{ MJ/kg mole}$
 - Chromium-coated: $2Cr + 3H_2O \rightarrow Cr_2O_3 + 3H_2 + 64.84 \text{ MJ/kg mole}$
 - Iron Oxidation above 1773 K
 - Zr Oxidation
- Introduction of special "ATF cards" in RELAP5-3D input deck
 - 1CCCG002 (for coating)
 - 1CCCG005 (for high temperature reaction)
 - Words structures similar to 1CCCG003
- Modification of RELAP5-3D logic for taking into account possible clad ruptures

- INL-Generic PWR (IGPWR) defined for SBO analysis
- Main Characteristics:
 - 3 Loop PWR / NSSS by Westinghouse
 - Core average power: 2546 MW_{th} [855 MW_e]
 - Core: 157 FA [15x15 Westinghouse FA]

	Value	Value	
Parameter	(SI units)	(British units)	
Core Power [MW _{th}]	2,546		
Reactor Inlet / Outlet Temperature [°C / °F]	282 / 319	540/ 606	
Number of Fuel Assemblies	157		
Rod Array	15x15		
RCS Coolant Flow [kg/s / lbm/hr]	12,738	101.6E+8	
Nominal RCS Pressure [MPa /psia]	15.5	2,250	
MCP seal water injection [m ³ /s / gpm]	3.78E-3	8	
MCP seal water return [m ³ /s / gpm]	1.42E-3	3	
MCP Power [MW / hp]	5.22	7,000	
Number of SG	3		
PRZ PORV set points op./clos. [MPa / psig]	16.2 / 15.7	2,350 / 2,280	
PRZ PORV capacity [kg/s / lbm/hr]	2 x 22.5	2 x 179,000	
PRZ SV set points op./clos. [MPa / psig]	16.4 / 17.7	2,375 / 2,575	
PRZ SV capacity [kg/s / lbm/hr]	3 x 37.0	3 x 293,330	
Relief Tank Rupture Disc capacity [kg/s / lbm/hr]	113.4	9.0E+5	
Relief Tank Rupture Disc set point op. [MPa / psid]	6.89	1000	
Relief Tank Total Volume [m ³ / ft ³]	36.8	1300	
Relief Tank Water Volume [m ³ / ft ³]	25.5	900	
SG PORV capacity [kg/s / lbm/hr]	1 x 47.0	1 x 3.73E+5	
SG PORV set points op./clos. [MPa / psig]	7.24 / 6.89	1,050 / 1,000	
SG SV capacity [kg/s / lbm/hr]	5 x 94.0	5 x 7.46E+5	
SG SV set points op./clos. [MPa / psig]	8.16 / 7.53	1,184 / 1,092	
Secondary Pressure [MPa / psia]	5.49	796	
Secondary Side Water Mass @ HFP [kg / lbm]	41,639	91,798	
SG Volume [m ³ / ft ³]	166	5,868	

- Modeling of the Primary/Secondary side
 - Primary System
 - RPV, 3 main circulation circuits (SGs, MCPs, HLs and CLs, PRZ)
 - Secondary side
 - Steam Lines until MSIV, MFW/AFW inlet
 - Core configuration
 - 3 hydraulic channels connected with junctions (cross flow simulation) → representing 3 different core zones: central, middle and outer core zones [different power]

Primary/Secondary side

RELAP5-3D parameters for Fuel Clads

Bayamatay	Clad Type						
rarameter	Zry	Cr-coated	FeCrAl				
Reaction Rate Constant (m ² Metal/s)	9.166E-7	1.409E-5	2.444E-5				
Reaction Heat Release (J/Kg mole)	5.94E+8	6.48E+7	6.73E+7				
Activation Energy (cal/mole)	35,890	66,890	82,218				
Clad Density (kg/m ³)	6,500	7,190	6,860				
Clad thickness (µm)	617	617	309				
Clad coating thickness (µm)	N/A	20	N/A				
Gas Gap thickness (µm)	95	95	95				
Pellet outer radius (mm)	4.6469	4.6469	4.9555				
Fuel pin outer radius (mm)	5.3594	5.3594	5.3594				

 Failure Criteria for different Transients, for SBO looking to the maximum clad damage

Cled Ture	Failure Criteria					
Clad Type	LB-LOCA	SBO				
Zircaloy	PCT>1477 K	PCT>2100 K				
ATF - FeCrAl	PCT>1804 K	PCT>1804 K				
ATF - Cr	PCT>1804 K	PCT>1804 K				

- RELAP5-3D provisions for SBO analysis
 - Creep Model: Larson-Miller model added via dedicated controlvariables for major components (CL, HL, PRZ surge line)
 - Special Control Logic for operator actions and main events

Procedure/Event	RELAP5-3D Control Logic
SGs depressurization	Start at t=+5,400 s (+1.5 hr), depressurize and cool- down with 100 F/hr (~55 C/hr) rate
Battery depletion	Selected by the safety analyst (4-8 hr). Disable TD-AFW injection and SG/PRZ PORVs
TD-AFW black-start	Restart TD-AFW and SG PORVs
Feed & Bleed on Secondary Side	Inject water from the ECST and bleed steam via SG PORVs. Keep the SGs depressurized at 0.923 MPa. Stop if ECST water or batteries are depleted.
Kerr pump injection on the primary side	Inject ~ 4 Kg/s of borated water from RWST after successful primary side depressurization. Injection continuing until: $P_{primary} \leq 2.0$ MPa.
ECCS injection	HPI/LPI + Recirculation mode if AC available. Accumulators injection if $P_{primary} < 4.0$ MPa
MCP Seal LOCA	21-480 gpm, depending on the transient

- Analysis started from SAPHIRE code generic PWR PRA model for SBO
 - Start with Loss-of-Offsite Power (LOOP) event
 - 888 sequences
 - Further reduced and regrouped in **four** SBO sub-events trees
 (304 sequences) → Total CDF: 8.21E-7/year
 - Grid related sequences identified + very low probability sequences removed → 15 main SBO sequences to be studied by RELAP5-3D

• Example of SAPHIRE PRA model

15 Grid-related SBO sequences

	Scenario Boundary Conditions								
R5-3D Scenario	TD AFW availability	PRZ PORV Closed	Rapid Secondary Side Depressurization	RCP seal LOCA	AC Power recovery	Rec	Recovery Actions		
SBO-1.0	YES	YES	RSD	21gpm/RCP 4Hrs No No AFW- MAN					
SBO-1.2	YES	YES	RSD	21gpm/RCP	4Hrs No	AFW- No SG MAN Depre.		No Late OPR	
SBO-2.0	YES	YES	RSD	76gpm/RCP	4Hrs No	No AFW- MAN	No AFW- MAN		
SBO-2.2	YES	YES	RSD	76gpm/RCP	4Hrs No	AFW- MAN	AFW- No SG MAN Depre.		
SBO-2.3	YES	YES	RSD 76gpm/RCP 4Hrs Yes HPI Cooldow		Cooldown	No LPR			
SBO-3.0	YES	YES	RSD	RSD 182gpm/RCP 4Hrs No					
SBO-3.1	YES	YES	No RSD	182gpm/RCP	3Hrs No	iHrs No			
SBO-3.3	YES	YES	RSD	182gpm/RCP	4Hrs Yes	HPI	HPI Cooldown		
SBO-4.0	YES	YES	RSD	480gpm/RCP	2Hrs No				
SBO-4.3	YES	YES	RSD	480gpm/RCP	2Hrs Yes	HPI	Cooldown	No LPR	
SBO-5.1	YES	YES	No RSD	300gpm/RCP	2Hrs No				
SBO-6.0	YES	NO	NA	NA	1Hr No				
SBO-6.3	YES	NO	NA	NA	1Hr Yes	HPI	No HPR		
SBO-7.0	NO	NA	NA	NA	1Hr No	No			
SBO-7.3	NO	NA	NA	300gpm/RCP	1Hr Yes	AFW	No HPI		

 Batteries for TD-AFW and SG PORV valve actuations assumed to last 4 hrs maximum

• Sequence 1.0, Long Term-SBO (~ 10.5 hrs)

PCT trend

Sequence 7.0, Short Term-SBO (~2.5 hrs)

- Summary of SBO scenarios w/o AC Power Recovery Zry vs FeCrAI
 - Time to core damage
 - Timing of 0.5 Kg H₂ production

	Scenario Description				Time to Core Damage t _{CD} (hh:mm)			Timing of 0.5 Kg H2 production tH2 (hh:mm)		
						FeCrAl	Δt	Zry	FeCr Al	Δt
SBO-1.0	TDAFW runs 4 hrs	PORV Closed	Depress.	21 gpm	10:32	10:51	0:19	10:01	10:45	0:44
SBO-1.3	TDAFW runs 8 hrs	PORV Closed	Depress.	21 gpm	15:40	16:49	1:09	15:02	15:35	0:51
SBO-2.0	TDAFW runs 4 hrs	PORV Closed	Depress.	76 gpm	10:17	10:36	0:19	9:45	10:31	0:46
SBO-3.0	TDAFW runs 4 hrs	PORV Closed	Depress.	182 gpm	10:22	10:43	0:21	9:48	10:37	0:49
SBO-3.1	TDAFW runs 4 hrs	PORV Closed	No Depress.	182 gpm	7:10	7:26	0:16	6:47	7:23	0:36
SBO-4.0	TDAFW runs 4 hrs	PORV Closed	Depress.	480 gpm	5:25	5:46	0:21	5:10	5:46	0:36
SBO-5.1	TDAFW runs 4 hrs	PORV Closed	No Depress.	300 gpm	4:42	4:51	0:03	4:26	4:51	0:25
SBO-6.0	TDAFW runs 4 hrs	PORV Opened	NA	21 gpm	1:16	1:23	0:07	1:07	1:23	0:16
SBO-6.1	TDAFW runs 4 hrs	PORV Opened	Depress.	21 gpm	5:19	5:40	0:21	1:17	5:40	4:23
SBO-7.0	No TDAFW	NA	NA	21 gpm	2:35	2:41	0:06	2:11	2:39	0:28

- Summary of SBO scenarios w/o AC Power Recovery Zry vs Crcoated
 - Time to core damage
 - Timing of 0.5 Kg H₂ production

	Sconario Description					Time to Core Damage t _{CD} (hh:mm)			Timing of 0.5 Kg H2 production tH2 (hh:mm)		
		Scenario I	Zry	Cr-coated	Δt	Zry	Cr- coated	Δt			
SBO-1.0	TDAFW runs 4 hrs	PORV Closed	Depress.	21 gpm	10:32	10:47	0:15	10:01	N/A	N/A	
SBO-1.3	TDAFW runs 8 hrs	PORV Closed	Depress.	21 gpm	15:40	15:55	0:15	15:02	N/A	N/A	
SBO-2.0	TDAFW runs 4 hrs	PORV Closed	Depress.	76 gpm	10:17	10:29	0:12	9:45	N/A	N/A	
SBO-3.0	TDAFW runs 4 hrs	PORV Closed	Depress.	182 gpm	10:22	10:30	0:08	9:48	10:28	0:40	
SBO-3.1	TDAFW runs 4 hrs	PORV Closed	No Depress.	182 gpm	7:10	7:19	0:09	6:47	7:09	0:22	
SBO-4.0	TDAFW runs 4 hrs	PORV Closed	Depress.	480 gpm	5:25	5:29	0:04	5:10	5:18	0:08	
SBO-5.1	TDAFW runs 4 hrs	PORV Closed	No Depress.	300 gpm	4:42	4:47	0:05	4:26	4:31	0:05	
SBO-6.0	TDAFW runs 4 hrs	PORV Opened	NA	21 gpm	1:16	1:18	0:02	1:07	1:09	0:02	
SBO-6.1	TDAFW runs 4 hrs	PORV Opened	Depress.	21 gpm	5:19	5:21	0:02	1:17	5:11	3:54	
SBO-7.0	No TDAFW	NA	NA	21 gpm	2:35	2:38	0:03	2:11	2:37	N/A	

- Main differences found from the SBO sequence analysis
 - Extra coping time for ATF clad before CD ~ minutes → negligible, to be included in the uncertainty bands of the calculations
 - Extra coping time for the timing of 0.5 Kg H₂ production ~30 min for FeCrAl,
 depends on clad rupture time for Cr-coated → generally, less H₂ production for all sequences
 - Outlier: extra coping time before CD of ~1.15 hrs for FeCrAl-LT-SBO-1.3 (8 hrs battery time) → derived from creep rupture of the PRZ surge line → further injection of water from accumulators

- Further investigations using RAVEN Limit Surface Search Algorithm
 - Exploring random parameters of the sequence SBO-3.0
 - Battery Lifetime: 4-8 hrs {uniform distribution}
 - Recovery Action timing: 10-15.5 hrs {uniform distribution}
 - Failure probability reduced by ~10%

- Final Risk Analysis performed by integrating in SAPHIRE model the RELAP5-3D results
 - Less than ~1 hr time difference does not warrant a change of the PRA SBO model
 - Introduction of coping time factor F_{CT} (*m/n*), *m* extra coping time, *n* time to AC recovery
 - $CDF' = F_{CT} (m/n) * CDF_0$
 - Extra coping time increases the chance of AC recovery
- Small extra coping time leads to minimal CDF reduction (2-4%)

Conclusions

- LWRS/RISA/ERP project investigates passive and active ways for enhancing LWR fleet safety and economic profitability
- First investigation carried out for the near-term ATF
- RELAP5-3D has been modified for analyzing the oxidation reactions of two near-term ATF
- Coupling of deterministic/probabilistic approaches allowed to quantify reduction on CD
- LBLOCA and SBO analyses carried out for FY2018
 - No significant CDF reduction
 - Potential Risk improvements from the smaller H₂ production
- Analyzing other AOO/DBA cases during FY2019 for having a clearer picture of the near-term ATF benefits