Jacobian Consistency Tool for RELAP5-3D

Dr. George L Mesina, INL

2018 RELAP5 International Users Seminar April 18-19, 2019 Idaho Falls

INL/CON-19-53510

Outline

- Background
- Jacobian Approximated well?
- Compare approximations of Jacobians
- J-Tool to generate & compare Jacobians
- J-Tool Input, studies, and results
- Conclusions

Background: Conservation Equations

1.	$\frac{\partial(\alpha_g \rho_g X_n)}{\partial t} + \frac{1}{A} \frac{\partial}{\partial x} (\alpha_g \rho_g X_n \nu_g A) = 0$	Noncondensable Mass
2.	$\frac{\partial(\alpha_g \rho_g U_g)}{\partial t} + \frac{1}{A} \frac{\partial \alpha_g \rho_g U_g v_g A}{\partial x} = -P \frac{\partial \alpha_g}{\partial t} - \frac{P}{A} \frac{\partial(\alpha_g v_g A)}{\partial x}$	$\frac{A}{d} + Q_{wg} + Q_{ig} - Q_{gf} + Q_{ig} - $
	$I_{ig}h_g^* + I_wh_g' + DISS_g$	Gas Energy
3.	$\frac{\partial(\alpha_f \rho_f U_f)}{\partial t} + \frac{1}{A} \frac{\partial \alpha_f \rho_f U_f v_f A}{\partial x} = -P \frac{\partial \alpha_f}{\partial t} - \frac{P}{A} \frac{\partial(\alpha_f v_f A)}{\partial x}$	$\frac{(1)}{2} + Q_{wf} + Q_{if} + Q_{gf} - $
	$\Gamma_{ig}h_f^* - \Gamma_w h_f' + DISS_f$	Liquid Energy
4.	$\frac{\partial(\alpha_g \rho_g)}{\partial t} - \frac{\partial(\alpha_f \rho_f)}{\partial t} + \frac{1}{A} \frac{\partial(\alpha_g \rho_g v_g A - \alpha_f \rho_f v_f A)}{\partial x} = 2\Gamma_g$	Diff Continuity
5.	$\frac{\partial(\alpha_f \rho_f)}{\partial t} + \frac{\partial(\alpha_f \rho_f)}{\partial t} + \frac{1}{A} \frac{\partial(\alpha_g \rho_g v_g A + \alpha_f \rho_f v_f A)}{\partial x} = 0$	Sum Continuity

Background

- The Primary variables are \overline{x} and \overline{v} where:
- The Conserved quantities, $\overline{F}(\overline{x})$, are on the left side of the **conservation** equations

$$\bar{v} = \begin{bmatrix} v_f \\ v_g \end{bmatrix} \\ \bar{x} = \begin{bmatrix} X_n \\ U_g \\ U_f \\ \alpha_g \\ p \end{bmatrix}$$

$$\bar{F}(\bar{x}) = \begin{bmatrix} \alpha_g \rho_g X_n \\ \alpha_g \rho_g U_g \\ \alpha_f \rho_f U_f \\ \alpha_g \rho_g - \alpha_f \rho_f \\ \alpha_f \rho_f + \alpha_f \rho_f \end{bmatrix}$$

aho National Laboratory

- RELAP5 adapts the equations for computer solution as follows:
 - Insert correlations for mass transfer, Γ , and energy transfer, Q's
 - Expand derivatives with multiplication and chain rule
 - Discretize in time and space
 - Replace new time temperatures & densities with 1st order multidimensional Taylor Polynomials
- Result is a linear system in the primary variables in Vol. 1, Sec. 3.1.4
 - Designate the coefficient matrix as the "Analytical" Jacobian, J_A .

$$-J_A \frac{\partial \tilde{x}}{\partial t} = \bar{b}_A^n + \overline{B_A}(\bar{v}^{n+1})$$

Solution. How good is it?

• So:
$$\left(\frac{\Delta \bar{\mathbf{x}}}{\Delta t}\right)^{n+1} = J_A^{-1} \overline{b}_A^n + J_A^{-1} \overline{B}_A(\overline{\boldsymbol{v}}^{n+1})$$

• Time advancement: $\overline{x}^{n+1} = \overline{x}^n + \Delta t \left(\frac{\Delta \overline{x}}{\Delta t}\right)^{n+1}$

To get $\overline{v}^{n+1} = x^n + \Delta t \left(\overline{\Delta t}\right)$ [Velocity Solution To get \overline{v}^{n+1} , do same kinds of operations to the **momentum equations**. Have only pressure and velocity at new time, n+1. $- J_M \left(\frac{\Delta \overline{v}}{\Delta t}\right)^{n+1} = \overline{b}_v^n + B_v \left(\frac{\Delta \overline{P}}{\Delta t}\right)^{n+1}$ $- \text{Solve } J_A \frac{\partial \overline{x}}{\partial t} = \overline{b}_A^n + \overline{B}_A (\overline{v}^{n+1}) \text{ to get } \left(\frac{\Delta \overline{P}}{\Delta t}\right)^{n+1}$ $- \text{Substitute } \left(\frac{\Delta \overline{v}}{\Delta t}\right)^{n+1} = J_M^{-1} \overline{b}_v^n + J_M^{-1} B_v \left(\frac{\Delta \overline{P}}{\Delta t}\right)^{n+1}$

How well does
$$J_{\Delta}$$
 approximate the actual Jacobian?

 $- \overline{\boldsymbol{v}}^{n+1} = \overline{\boldsymbol{v}}^n + \Delta t \left(\frac{\Delta \overline{\boldsymbol{v}}}{\Delta t}\right)^{n+1}$

Compare: Analytical Jacobian, J_A, with Numerical Jacobian, J_N.

Discrete Model Used as Basis for Comparison

- To build a Jacobian Matrix with RELAP5-3D coding, need a model and input values.
- System = a single control volume
- Jacobian J_A (or J_N) involves the mass and energy equations only, not the momentum equations
 - No trips, controls, neutronics
 - Explicit coupling to heat conduction
- Geometry Control Volume = SNGLVOL
 - Volume 1m³, dL=1m, Area=1m².
 - No junctions
- Semi-implicit advancement, dt = 1s
- Fluid = H2ON

Representative Control Volume

Calculate Analytical and Numerical Jacobian

- Input values for \overline{x}^n
 - Actually requires over 100 quantities initialized
- Build analytical Jacobian J_A
 - Use formulation of Vol. 1, Section 3.1.4
 - Call RELAP5-3D subroutines (STATEP, VEXPLT, PRESEQ)
 - Separates temporal, mass transfer, and energy transfer portions
- Build numerical Jacobian, J_N
 - Loop over elements of $\overline{x} = (x_1, x_2, x_3, x_4, x_5) = (X_n, U_g, U_f, \alpha_g, P)$
 - Find Forward = $\frac{\overline{F}_j \overline{F}_j(\overline{x})}{\Delta \overline{x}_k}$ or Backward = $\frac{\overline{F}_j(\overline{x}) \overline{F}_j(\overline{x} \Delta \overline{x}_k)}{\Delta \overline{x}_k}$ diference, $1 \le j, k \le 5$
 - Use backward whenever forward involves one single-phase and one two-phase fluid state or one stable and one meta-stable (or worse)
 - Use STATEP to get properties at $(\overline{x} + \Delta \overline{x}_k)$ or $(\overline{x} \Delta \overline{x}_k)$

Decomposition for Detailed Jacobian Study

- Jacobian, J, is broken into 3 submatrices
 - J^m = Derivs of mass transfer terms (Diff Mass Eqn => Matrix row 4 only)
 - J^e = Derivs of energy transfer terms (Energy Eqn => Matrix row 2 and 3)
 - $-J^{t} = J J^{m} J^{e}$ = Derivatives of **temporal** terms
- - Mass transfer occurs in difference equation only
- In eqn. 2, $Q_2 = -Q_{ig} + Q_{gf} \Gamma_{ig}h_g^*$ is energy transfer term
- In eqn. 3, $Q_3 = -Q_{if} Q_{gf} + \Gamma_{ig}h_f^*$. $Q_3 = -Q_2$ $-Q_{if} = H_{if}(T^s(P_s) - T_f)$ $-Q_{ig} = \frac{P_{s,L}}{P_L}H_{ig}(T^s(P_s) - T_g)$ $-Q_{gf} = \left(\frac{P-P_s}{P}\right)H_{gf}(T_g - T_f)$ $J^e = \begin{bmatrix} \frac{0}{\partial \bar{Q}_2} & \frac{0}{\partial \bar{Q}_2} & \frac{\partial \bar{Q}_2}{\partial U_f} & \frac{\partial \bar{Q}_2}{\partial u_g} & \frac{\partial \bar{Q}_2}{\partial Q_g} & \frac{\partial \bar{Q}_2}{\partial Q_g$
- Apply to both Analytical and Numerical Jacobian

Jacobian Tool High-level Algorithm Description

Loop over (thousands of) input fluid states

- Read an input fluid state
 - Initialize and calculate all RELAP5-3D data needed to build a Jacobian Matrix in subroutine PRESEQ
- Build Analytical & num. Jacobian submatrices: J_A^t , J_A^e , J_A^m and J_N^t , J_N^e , J_N^m
- Calculate how close Jacobians are
 - All pairwise differences of elements in corresponding submatrices
- Calculate condition number J_A or J_N
- Output differences & condition numbers for the current fluid state
 End Loop

Output summary of worst conditions among all input states

Initialization of Jacobian Tool Data

- Input specifies the fluid state to examine, 11 quantities
 - A fluid state = (P, α_g , X_n, T_g, T_f)
 - P = Pressure, α_g = void fraction
 - X_n = noncondensable quality
 - T_g , T_f = Temperature of gas and liquid phases
 - Indicator Flag: Absolute or "from saturation"
 - Heat transfer coefficients: H_{ig}, H_{if}, H_{gf}
 - Old time quantities: $\alpha_{g,old}$, $X_{n,old}$

- Convert T_q and T_f to internal energy, U_q and U_f
 - Find partial pressure of steam. Call TSTATE & STATEP
- Derived RELAP5-3D data must be set or built
 - Much module data: volume, list vectors, system, components, junction, control, auxiliaries, etc. About 100 quantities in all
- After input and initialization, calculate rest of properties from STATEP

J-Tool Features

- Accept internal energies or Temperatures (convert to internal energy)
- Can accept absolute or relative (to saturation) temperatures
 - Calculates T^{sat} from input P and X_n .
- Recognizes and rejects many invalid states
- Calculates and stores Jacobian Relative Errors across all N states
 - Relerr_t(i, j, k) = $|J_{A,i,j}^t J_{N,i,j}^t| / max(J_{A,i,j}^t J_{N,i,j}^t)$
 - Relerr_m(j, k) = $|J^{m}_{A,4,j} J^{m}_{N,4,j}| / max(J^{m}_{A,4,j}, J^{m}_{N,4,j})$
 - Relerr_e(j, k) = $|J^{e}_{A,2,j} J^{e}_{N,2,j}| / max(J^{e}_{A,2,j}, J^{e}_{N,2,j})$
 - MaxRelerr_t(i, j) = max {Relerr_t(i, j, k), k=1, ..., N}
 - MaxRelerr_m(j) = max {Relerr_m(j, k), k=1, ..., N}
 - MaxRelerr_e(j) = max {Relerr_e(j, k), k=1, ..., N}
- Uses LAPACK to calculate condition numbers of J = J^t + J^m + J^e
 - For both Analytical and Numerical Jacobian

Jacobian New Modules

- Jacbldmod subroutines for calculating the analytical Jacobian
 - Original way and in submatrix pieces
 - Portions of vexplt.F
 - Corrected flexible wall
 - void ramp subroutine
- Jacobmod subroutines for Jacobian Tool
 - File opening (Jacobian input & output, Water properties)
 - Input reading, output: header, case, final
 - Initialization, permanent and per case
 - Numerical Jacobian calculations
 - Statistics collection & condition number calculation

Major J-Tool Subroutines and files

- Preseq (relap/ directory)
 - Portions moved into jacbldmod, option to build Jacobian 2 ways
- Istate (relap/ directory)
 - Modified to produce same values from J-Tool as from RELAP5-3D
- Jacprintprop new (relap/ directory)
 - Various Diagnostic output of variables used to construct Jacobian
- Jacobian Directory
 - Jacobian main program
 - Open/Initialize subroutines jacoballor5, jacobfluid / initvlm, jacinitfprp
 - State Input & Calc Data jacreadstate
 - Jacobian calc jacnum, temporalterms
 - Diagnostics jacobdiag, jacprintprop, unitcheck, and others...
 - Scripts Makefile, input_gen2.py
 - Input jacob_2.in

Performing Studies

• Python script, input_gen2.py, generates input files for studies. E.G.

```
voids = [0.001, 0.1, 0.5, 0.9, 0.999]
tempf = [-50.0, -10.0, -1.0, -0.1, 0.0, 1.0, 10.0]
tempg = [-5.0, -1.0, 0.0, 1.0, 100.0, 500.0]
Hig = 2.090156593143735E+04
Hif = 6.92691E-02
Hig = 5.65530E+05
flag = 1.0
mult = 3000/14.7
spacing = math.log(mult)/6
for press in range(7):
  p = 6894.75729*14.7*math.exp(press*spacing)
  for voidg in voids:
    voidgo = voidg*0.9
# NC-Quality. There can be no NC but NEVER ONLY NC.
   for qual in qualities:
      quala = qual
      if voidg == 0.0:
        quala = 0.0
      qualao = quala*0.9
      for tf in tempf:
        for tg in tempg:
# Output State N-Tuple (state point)
          print p, voidg, quala, tg, tf, Hgf, Hif, Hig, flag, voidgo, qualao
```


- Study 1 was comprised of 10290 fluid states
- Condition Numbers of the 5x5 Jacobian Matrices are LARGE
 - Maximum was O(10²¹)
 - Minimum was O(10⁵)
 - Many of the relative errors were above tolerance of 5%
- Study 2 of 7350 combinations of primary variables

	Р	α_{g}	X _n	ΔT_{f}	ΔT_{g}	H _{if}	H_{ig}	H _{gf}
1	101352.932163	0.001	0.0	-50.0	-5.0	6.927e – 2	5.6553e5	1.7587e4
2	245925.542130	0.1	0.1	-10.0	-1.0			
3	596720.499166	0.5	0.5	-1.0	1.0			
4	1447899.030900	0.9	0.8	0.0	100.0			
5	3513222.030440	0.999	0.99	1.0	500.0			
6	8524578.559510			10.0				
7	20684271.870000							

J-Tool Initial Results

- **Study 1** had case with Tf = 0 C and Xn = 1.0.
- Study 2, 7350 cases, eliminated those cases.
 - Relative errors shown in table. Red indicates above tolerance

$\partial_{\partial X_n}$	$\partial_{\partial X_n}$ $\partial_{\partial U_g}$		$\partial_{\partial lpha_g}$	$\partial_{\partial P}$			
1.28E-01	1.66E- <mark>04</mark>	0	1.00E+00	9.30E -06			
1.00E+00	1.20E+00	0	2.97E -13	9.43E-01			
0	0	9.73E-02	1.91E -10	1.12E-01			
1.00E+00	7.47E- <mark>04</mark>	8.11E- <mark>04</mark>	2.59E -10	6.97E -05			
1.00E+00	7.47E- <mark>04</mark>	8.11E- <mark>04</mark>	2.39E -08	6.97E -05			
Jacobian Mass Transfer, J ^m , Relative Errors							
1.98E+00	1.00E+00	1.00E+00	0	1.86E+00			
Jacobian Energy Transfer, J ^e , Relative Errors							
1.86E+00	1.00E+00	1.00E+00	0	1.85E+00			

Jacobian Temporal Term, J^t, Relative Errors

 To find causes, undertook new studies and created many diagnostics to zero in on sources.

- **Study3**: Worst error inducing state was case 3178
- P =1447899.0309, $\alpha_g = 0.001$, $X_n = 0.0$, $\Delta T_f = 0.0$, $\Delta T_g = +1.0$.
- Discovered that for T_f = T^{sat} to 17 decimal places, calculated liquid density and enthalpy in the bulk fluid are very close to the gas values. Error.
- To Test
 - Modified RELAP5-3D input to accept 17 decimal places
 - Created input file jvol.i with $T_f = T^{sat}$ to 17 decimal places
- RELAP5-3D produced same calculations as J-Tool
- Study 4: Heat Transfer Coefficients
 - Reduced rel. errors using Heat Transfer Coefficients from a RELAP5 run
 - Reduced rel. errors Heat Xfer Coefficients from time zero initialization
 - Both reduced many errors further

- Study 5: Avoiding unstable fluids with H2ON
 - Worst remaining case had energy transfer relative error > 1
 - $J_{A,2,j}^{e}$ and $J_{N,2,j}^{e}$ had **opposite signs** for j = 1 or j = 5.
 - Occurred at P = 20,684,271.87 MPa, $\alpha_g = 0.001$, $X_n = 0.0$, $\Delta T_f = -50.0C$, and $\Delta T_g = -5.0C$
 - $T^s == 641.76 == T_g = 50 + T_f$ to 14 decimal places.
 - But $\Delta T_g = -5.0$ should produce $T_g = 636.76$.
 - Input file jvol4.i with extra diagnostics shows that RELAP5-3D reads in $T_g = 636.76$, calculates $T^s = 641.76$, but resets $T_g = T^s = 641.76$ after the time zero edit in subroutine STATEP in the nh5 section.
- Avoid unstable fluids at high pressure. Use top pressure under 19 Mpa — Why? Next slide…

- Study 5 continued: Examine ASCII fluid property table. Distance from saturation through the metastable liquid to unstable appears less than 10 degrees for high pressures (above 20 MPa)
 - This does not occur when old H2O property file is used
 - It did not occur with pressures below 19 MPa with H2ON
- Study 6: Effect of Consistent fluid
 - RELAP5 can linearly interpolate between properties calculated:
 - 1. Usual way with Clausius-Clapyron Eqns. (Vol. 1 Sec. 3.2.2)
 - 2. New Consistent Fluid way: linearly interpolated from property table
 - Default is Clausius (ω = 1 for). Input ω = 0 for Consistent Fluid
 - Previous work showed $\omega = 0$ (Consistent) was better more often than not by certain measures
 - As ω decreases, the relative error in the J^t_{3,5} decreases, but it increases in 6 other elements of J^t, one of J^e, and one of J^m.

- With the previous adjustments, the **MAXIMUM** RELATIVE Errors are
 - Avoid pathological ΔT values, especially near P_{crit}
 - Use reasonable H's, Clausius-Clapyron Eqns.

	$\Delta/\Delta X_n$	$\partial \partial U_g$	$\partial / \partial U_f$	$\partial_{\partial lpha_g}$	$\partial_{\partial P}$
NC qual.	10.8%	3.08E -05	0	2.52E -13	9.30E -06
Gas energy	4.78%	12.5%	0	2.36E -13	1.47%
Liq. energy	0	0	2.45E -03	1.91E -10	7.84E -03
Diff. Mass	4.78%	3.11E -05	2.63E -04	2.39E -10	9.40E -06
Sum Mass	4.78%	3.11E -05	2.63E -04	2.48E -10	9.40E -06
Mass Xfer	79.6%	8.20%	53.5%	0	15.2%
Energy Xfer	51.0%	8.18%	53.5%	0	10.9%
	NC qual. Gas energy Liq. energy Diff. Mass Sum Mass Mass Xfer Energy Xfer	$\Delta / \Delta X_n$ NC qual. 10.8% Gas energy 4.78% Liq. energy 0 Diff. Mass 4.78% Sum Mass 4.78% Mass Xfer 79.6% Energy Xfer 51.0%	$\Delta/\Delta X_n$ $\partial/\partial U_g$ NC qual.10.8%3.08E-05Gas energy4.78%12.5%Liq. energy00Diff. Mass4.78%3.11E-05Sum Mass4.78%3.11E-05Mass Xfer79.6%8.20%Energy Xfer51.0%8.18%	$\Delta/\Delta X_n$ $\partial/\partial U_g$ $\partial/\partial U_f$ NC qual.10.8%3.08E-050Gas energy4.78%12.5%0Liq. energy002.45E-03Diff. Mass4.78%3.11E-052.63E-04Sum Mass4.78%3.11E-052.63E-04Mass Xfer79.6%8.20%53.5%Energy Xfer51.0%8.18%53.5%	$\Delta/\Delta X_n$ $\partial/\partial U_g$ $\partial/\partial U_f$ $\partial/\partial \alpha_g$ NC qual.10.8%3.08E-0502.52E-13Gas energy4.78%12.5%02.36E-13Liq. energy002.45E-031.91E-10Diff. Mass4.78%3.11E-052.63E-042.39E-10Sum Mass4.78%3.11E-052.63E-042.48E-10Mass Xfer79.6%8.20%53.5%0Energy Xfer51.0%8.18%53.5%0

- For most elements, worst case relative errors are reasonably small
- Further study is indicated for the elements not shown in black

J-Tool Summary 1

- A Jacobian Matrix tool is available for developers to analyze and identify areas for improvement of the solution process
- J-tool is a standalone program
 - No effect on standalone RELAP5-3D calculations or run speed
 - Finds Relative Errors as differences of RELAP5-3D calculations & 1st order accurate Finite Difference Approximations (FDA).
 - Reports worst case in study for each element independently
- J-Tool revealed pathological cases for RELAP5-3D
 - $-T_f == T^{sat}$
 - Subcooled fluid at extreme pressures
- There is room for RELAP5-3D improvement in columns 1 and 3, i.e. derivatives w.r.t X_n and U_f.

J-Tool Summary 2

- Excluding the pathological cases, analysis of WORST CASE RELATIVE errors for the temporal terms shows:
 - 18 of 25 temporal terms are below 0.25%
 - 23 of 25 are below 5%. ALL 25 are below 13%
- Excluding the pathological cases, analysis of WORST CASE RELATIVE errors for the Mass and Energy transfer terms shows:
 - 6 of 10 terms are below 16%
 - 4 of 10 need further investigation
- The relative errors calculations could be improved by using 2nd order accurate FDA for comparison
- Consistent fluid does not improve relative errors
- Jacobian matrices have HIGH condition numbers
 - Solving Jacobian system with partial pivoting, or full pivoting, will increase accuracy