IRUG 2019

RELAP5-3D Application to Risk-Informed Systems Analysis

Yong-Joon Choi, Ph.D. Idaho National Laboratory

Apr. 18-19, 2019

Light Water Reactor Sustainability (LWRS)

- Support for safe and economic long-term operation of US NPPs
 - Sponsored by U.S. DOE, coordinated with US nuclear industry and stakeholders
 - Conduct R&D to develop technologies and solutions for sustainable nuclear energy

Program objectives

- Provide science and technology based solutions to industry originated issues
- Manage aging systems, structures and components (SSC) for safe and economic NPP operation

Three large R&D pathways (FY19)

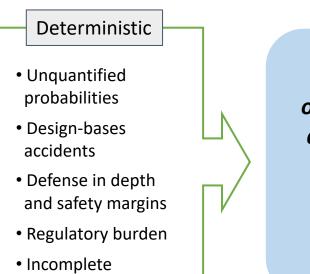
- Material research
- Plant modernization
- Risk informed systems analysis

Risk-informed Systems Analysis

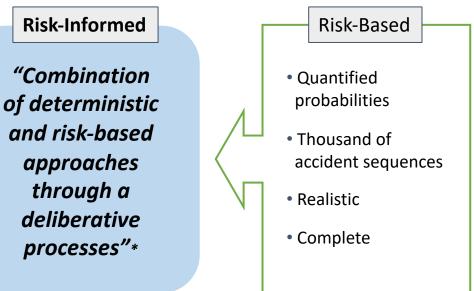
Nuclear Energy

Risk-Informed Systems Analysis (RISA) Pathway Mission and Goals

Mission


 R&D to optimize safety margins and minimize uncertainties to achieve high levels of safety & economic efficiencies

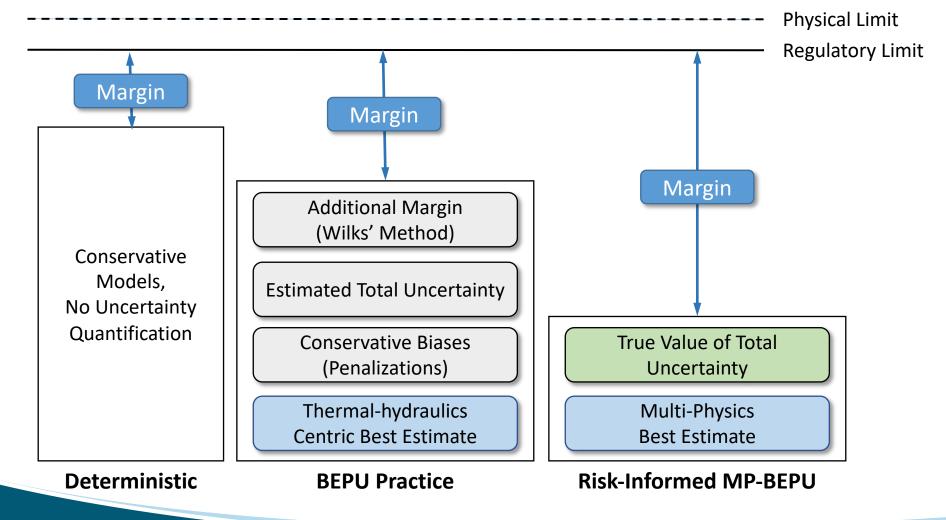
Goals


- Deploy risk-informed tools and methods to US nuclear industry (*the what*)
 - Overcome issues with legacy methods and tools
 - Improve economics, reliability, and sustain safety during extended operations
- Conduct industry-engaged risk-informed applications (*the how*)
 - Collaborate with industry for margin management strategies development
 - Facilitate risk-informed technology transfer to industry

LIGHT WATER REACTOR SUSTAINABILITY Concept of *Risk-Informed* Framework

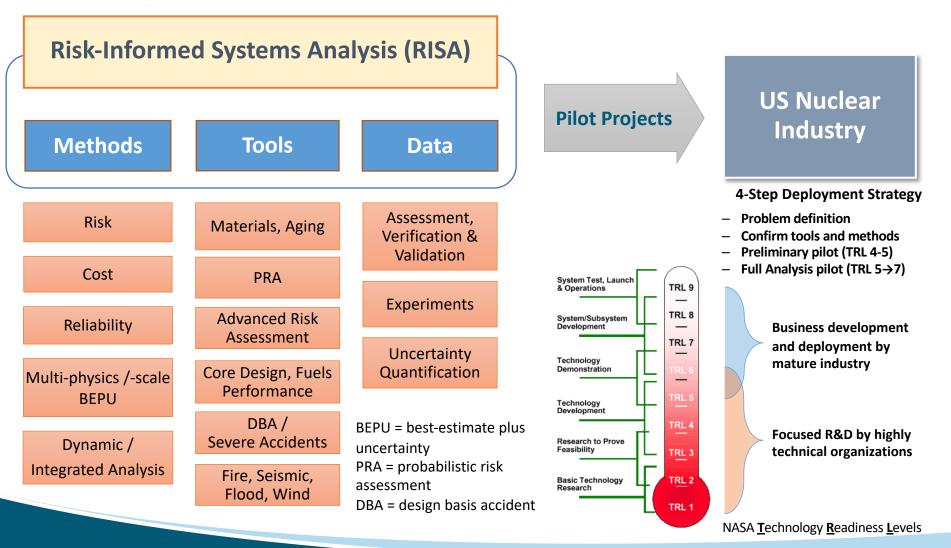
LWRS

Benefits of Risk-informed Approach


"Science based margin optimization and minimize over-conservatism"

"Support risk-informed licensing and regulatory system development"

"Consequently, improves safety and economics for longer-term operation"


^{*} NRC Risk-Informed and Performance Based Initiatives, Commissioner George Apostolakis, April, 30, 2013



Risk-Informed Systems Analysis Work Scope

Tools possibly used in risk informed analysis

Core Design	VERA-CS
Fuel Performance	FRAPCON/FRAPTRAN BISON
System Analysis	RELAP5-3D RELAP-7
Containment	MELCOR
Severe Accident	MELCOR
Material Aging	GRIZZLY
Natural Hazards	MASTODON NEUTRINO CFAST FDS
PRA	SAPHIRE RAVEN EMRALD HUNTER
Code Integration	LOTUS RAVEN
Cost & Economics	CRAFT RAVEN

Enhanced Resilient Plant Systems

- Integration of enhanced safety systems: Accident Tolerant Fuel, Diverse and Flexible Coping Strategies (FLEX), Passive cooling system
- RELAP5-3D/RAVEN coupling for ATR by D. Mandelli
- RELAP5-3D for ATF present by C. Parisi
- Planed RELAP5-3D analysis of passive cooling system
- Enhanced Operation Strategies for System Components
 - Analysis of Terry turbo-pump behavior under beyond DBA
 - Plan to improve RELAP5-3D computational capability on Terry turbine
- Modernization of DBA Analysis with Application on Fuel Burnup Extension
 - Develop risk-informed safety analysis model for higher burn-up operation
 - RELAP5-3D transient analysis for new fuel/core configuration

- Digital Instrumentation and Control (I&C) Risk Assessment
 - Develop risk assessment method for digital I&C integration to NPP
 - Transient and accident analysis with RELAP5-3D
 - Plan to develop RELAP5-3D capability for using Multi-Physics BEPU modeling
- Plant Reload Process Optimization
 - Development of fuel reloading licensing process optimization method
 - RELAP5-3D for system analysis under risk informed fuel thermal limit analysis
- Assessment of risk informed tools and methods
 - $_{\circ}\,$ Maturity and V&V status assessment of tools and methods
 - RELAP5-3D for FY2019

More programs will be developed and looking for use of RELAP5-3D

Major Outcomes of the RISA Pathway

Risk-Informed Systems Analysis (RISA) will

- Deploy and update risk-informed tools & methods
- Enhance plant resiliency
 - Increase coping time and safety margins, decrease plant damage frequency, and improve operational economics
- Focus on intersection of risks & costs
 - Expand the risk-informed technology on maintenance cost saving and license renewal
- Recover safety margin & reduce operational cost
 - Assess and optimize margins of extended burnup operation, thermal limit of fuel reloading, external hazard analysis, and digital I&C implementation
- Communicate & support validation
 - Collect and update industry needs and emerging issues

The RISA Pathway working to deploy validated risk-informed systems analysis tools and methods to US nuclear industry to improve economics, reliability, and sustain safety during extended plant operations

Sustaining National Nuclear Assets

http://lwrs.inl.gov