Validation of a Simple RELAP5-3D Point Kinetics Model of the Full-Slotted MARCH Core in TREAT

C. B. Davis

2019 IRUG Meeting Idaho Falls, ID April 18 – April 19, 2019

www.inl.gov

Outline

- Background
- Description of TREAT
- Description of the RELAP5-3D model
- Validation results
- Conclusions

Background

- The Transient Reactor Test (TREAT) facility has been restarted to test accident tolerant fuels for light water reactors that are designed to have better performance than traditional Zircaloy-clad UO₂ fuel during normal operation and accidents
- New experiments are being performed to test proposed fuel concepts and provide data for assessment of advanced multi-physics computer codes
- Calculations are required now to demonstrate that the experiments will meet program objectives and can be performed safely
 - The advanced multi-physics computer codes are not ready yet
 - The safety calculations for the experiments are presently being performed using input from RELAP5-3D
- RELAP5-3D point kinetics models of TREAT were developed and validated previously as described at the 2015 and 2018 IRUG meetings

Background (cont'd)

- The previous models simulated a half-slotted core that allowed viewing through the north hodoscope slot
- The simple RELAP5-3D model described at the 2015 IRUG meeting was modified to represent the core currently in TREAT
 - The core is now a full-slotted core that allows viewing through either the north or south hodoscope and contains the Minimal Activation Retrievable Capsule Holder (MARCH)
- The simple RELAP5-3D model described in the 2015 IRUG meeting was modified to represent the full-slotted MARCH core
- The simple model was validated using data from transients performed in the last year
- A description of the revised model and its validation are the subjects of this presentation

Description of TREAT

- TREAT is a dry reactor that went critical in 1959
- Operations were suspended in 1994
- The reactor was restarted in FY 2018
- Driver core is made up of urania dispersed in graphite blocks encapsulated by Zircaloy cans
- Square layout with 361 positions that are filled with fuel or dummy assemblies
- The size of the core varies from small to large (~ 150 to 340 fuel assemblies)
- Dummy assemblies are located around the periphery of the core and are filled with graphite for additional reflection
- Experiments are placed in the center of the core

Description of TREAT (cont'd)

- Core is set on a square gridplate
- Core is surrounded by graphite reflectors
- A small amount of cooling is provided by downflow of air
- The heat capacity of the graphite provides the primary heat sink during transients
- Reactivity control is provided by three banks of control rods
- The transient rods are used for high-speed transient control

Description of TREAT fuel assembly

- Each fuel assembly is a 4x4" "square" that contains fuel, a gas gap, and a Zircaloy can
- The gas gap was evacuated during manufacture
- Active core is 48" tall
- There is a small gap between fuel elements for air flow

Description of TREAT (cont'd)

TREAT can perform two types of transients

- Unshaped transients
 - The only reactivity addition is that required to initiate the experiment
 - The reactor power responds naturally due to thermal feedback
- Shaped transients
 - The transient rods are moved during the test to obtain a desired power curve
 - The reactor power responds to the rod movement and the thermal feedback

Description of the RELAP5-3D model of the fullslotted MARCH core

- The RELAP5-3D model was developed to calculate the reactor power during experiments
- The reactor power is needed to support other analyses required to demonstrate that the experiments will meet operational objectives and that they can be performed safely
- The model calculates the temperature of an average fuel assembly to supply thermal feedback to the point kinetics model
- The model also calculates the fuel temperature at the hot spot to determine the margins to thermal limits

Description of the RELAP5-3D MARCH model of the full-slotted core (cont'd)

- The full-slotted model is based on the simple half-slotted model described at the 2015 IRUG meeting
 - The number of fuel elements was reduced from 338 to 330 to accommodate viewing through the south hodoscope slot
 - The volumetric heat capacity of the fuel was revised based on a new fit produced by the TREAT program
 - The reactivity feedback due to changes in fuel temperature was revised based on new calculations
 - The worth of the transient rods was revised based on new measurements

Description of the RELAP5-3D model of the fullslotted core (cont'd)

- The model is very simple
- One heat structure represents all the fuel in the core
- Another heat structure represents all the Zircaloy cans
- Radiation between the two average heat structures is accounted for
- Conduction across the gap is neglected
- Two similar heat structures are used to represent the hottest fuel in the core
- A cylindrical heat structure is used to represent the square assemblies
- Distortions are accounted for by adjusting the heat transfer coefficient at the outer surface of the can and the thermal conductivity of the Zircaloy

The RELAP5-3D model was validated using data from three new transients

- All three transients were unshaped and were initiated by near step insertions of reactivity
 - Transient 2909 (0.0171 dk/k or 2.38\$)
 - Transient 2910 (0.0294 dk/k or 4.10\$)
 - Transient 2911 (0.0388 dk/k or 5.41\$)
- The measured power from the log channel of the control computer was judged to be the most reliable based on previous experience and was used in this validation
 - The energy deposition in the core is the integral of the measured power

The RELAP5-3D model was validated using data from three new transients (cont'd)

- Preliminary calculations of the validation transients with the MARCH feedback table resulted in slightly non-conservative values of energy deposition and maximum fuel temperature
 - The average ratio of the calculated to measured energy deposition was 0.976
 - The calculated maximum fuel temperatures were 6.3°C lower, on average, than the measured values
- The calculated reactivity feedback was reduced by 2% so that the results of the validation calculations would be slightly conservative

The near step insertions were modeled based on the movement of the transient rods

- The input position was based on the average of the measured positions of the four transient rods
- The transient rods accelerate and decelerate quickly and reach a maximum velocity of about 140 inches/s

The calculated maximum power is in reasonable agreement with the measurements as a function of reactivity

The calculated maximum
reactor powers were within
the scatter of the
measurements or were
conservative for each
transient

The calculated energy deposition is in reasonable agreement with the measurements as a function of reactivity

- The calculated energy deposition was conservative or within the scatter in the measurements for each transient
- The average ratio of the calculated to measured energy deposition was 1.002

Idaho National Laboratory

The calculated maximum fuel temperature is in reasonable agreement with the measurements as a function of reactivity

- The calculated maximum fuel temperatures were, on average, 1.3°C higher than the measured values
- The deviations between the calculated and measured temperatures were probably close to the uncertainty in the measurements

The calculated powers are in reasonable agreement with the measurements as a function of time

• These results are for Transient 2010

The calculated energy depositions are in reasonable agreement with the measurements as a function of time

• These results are for Test 2910

Conclusions

- The simple RELAP5-3D model of TREAT was modified to represent the full-slotted MARCH core
- Modifications were made to represent the worth of the transient rods and reactivity feedback for the MARCH core
 - The reactivity feedback was multiplied by 0.98 to provide slightly conservative results
- The modified model was validated using data from Transients 2909, 2910, and 2911, which were unshaped transients initiated with near step insertions of reactivity of about 1.7%, 2.9%, and 3.9%, respectively

Conclusions (cont'd)

- The RELAP5-3D calculations were in reasonable agreement with the measured results
 - The calculated maximum reactor powers were within the scatter of the measurements or were conservative
 - The average ratio of the calculated to measured energy deposition was 1.002
 - The calculated maximum fuel temperatures were, on average, 1.3°C higher than the measured values
- The results of the RELAP5-3D calculations are currently being used as input for the thermal and structural evaluations of new TREAT experiments