

Idaho National Engineering and Environmental Laboratory

Analysis of Transients in an Actinide Burner Reactor Cooled by Forced Convection of Lead Bismuth

Cliff B. Davis

Idaho National Engineering & Environmental Laboratory Idaho Falls, Idaho 83415

2002 RELAP5 International User's Seminar September 4-6, 2001 Park City, Utah

September 5, 2002

Introduction

- The INEEL and MIT are investigating the potential of fast reactors cooled by lead bismuth and lead
 - Pool reactor operating at low pressure
 - Passive safety characteristics
 - Economic advantages due to simple design, high operating efficiency, and long core lifetime
 - Can burn actinides created by current LWRs
 - Coolant is chemically inert and has a high boiling point
 - Candidate Generation IV design

Introduction (continued)

- MIT is optimizing the thermal-hydraulic design for steady, full-power operation
- INEEL is responsible for performing the thermalhydraulic analyses of transients
 - The ATHENA computer code is used for system analysis
 - Lead-bismuth properties have been added to ATHENA

Reactor layout

Reactor layout (top view)

02-GA50358-02

Design features enhance safety

- Core contains 157 fuel bundles with low peaking factors and low reactivity swings over core lifetime
- Forced convection using centrifugal pumps, but with a tall chimney for enhanced natural circulation
- Dual free levels with hot and cold pools below an inert cover gas limits core voiding following a heat exchanger tube rupture
- Reactor Vessel Auxiliary Cooling System (RVACS) that passively removes decay heat
- LOCAs unlikely because of guard vessel and lack of external loops

The ATHENA model

- Represents both hot and average core channels
- Uses a detailed nodalization (40 volumes) to represent the counter-flow heat exchangers
- Uses mixture level tracking model in the vessel riser and pump downcomer regions
- Represents RVACS with a combination of heat structures, flow paths, and radiation enclosure models
- Uses a point kinetics model with reactivity feedback
- The feedwater flow was adjusted slightly to match the steady state predicted by MIT

The ATHENA model represents all the major features of the reactor

ATHENA was used to model various thermal-hydraulic transients without scram

- Primary coolant pump trip*
- Station blackout*
- Step reactivity insertion*
- Heat exchanger tube rupture
- Turbine stop valve closure
- Steam line break
- Loss of feedwater preheating
- LOCA in cleanup system

^{*} Most limiting transients and described in this paper

Safety margins were determined by comparing maximum calculated temperatures with limiting values

- Fuel rod cladding 725°C
- Fuel 1000°C
- Guard vessel 750°C
- For the analyzed transients, the cladding temperature was always the most limiting parameter

Cladding temperatures remained below the transient limit following a trip of the primary coolant pumps

The cladding temperature reached the transient limit during a station blackout

The RVACS was able to remove the decay heat during a station blackout

Reactivity feedback limited the effects of a 0.2\$ step reactivity insertion

The cladding temperature remained below the limit following the 0.2\$ step reactivity insertion

The actinide burner reactor exhibits excellent safety characteristics, even with a failure to scram

- The maximum calculated temperatures remained below the identified limits for all transients evaluated
- The cladding temperature limit was more restrictive than the fuel and guard vessel temperature limits
- The station blackout was the most limiting transient evaluated, and resulted in two temperature peaks
 - The first peak occurred within the first minute and was caused by the power-to-flow mismatch following the pump trip
 - The second peak occurred at 18 hours and is associated with the balance between the power generated by the core and removed by RVACS