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Introduction
• The INEEL and MIT are investigating the potential of

fast reactors cooled by lead bismuth and lead
– Pool reactor operating at low pressure
– Passive safety characteristics
– Economic advantages due to simple design, high

operating efficiency, and long core lifetime
– Can burn actinides created by current LWRs
– Coolant is chemically inert and has a high boiling

point
– Candidate Generation IV design
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Introduction (continued)
• MIT is optimizing the thermal-hydraulic design for

steady, full-power operation
• INEEL is responsible for performing the thermal-

hydraulic analyses of transients
– The ATHENA computer code is used for system

analysis
– Lead-bismuth properties have been added to

ATHENA
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Reactor layout
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Reactor layout (top view)
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Design features enhance safety
• Core contains 157 fuel bundles with low peaking

factors and low reactivity swings over core lifetime
• Forced convection using centrifugal pumps, but with

a tall chimney for enhanced natural circulation
• Dual free levels with hot and cold pools below an

inert cover gas limits core voiding following a heat
exchanger tube rupture

• Reactor Vessel Auxiliary Cooling System (RVACS)
that passively removes decay heat

• LOCAs unlikely because of guard vessel and lack of
external loops
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The ATHENA model
• Represents both hot and average core channels
• Uses a detailed nodalization (40 volumes) to

represent the counter-flow heat exchangers
• Uses mixture level tracking model in the vessel riser

and pump downcomer regions
• Represents RVACS with a combination of heat

structures, flow paths, and radiation enclosure
models

• Uses a point kinetics model with reactivity feedback
• The feedwater flow was adjusted slightly to match the

steady state predicted by MIT
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The ATHENA model represents all
the major features of the reactor
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ATHENA was used to model various
thermal-hydraulic transients without scram
• Primary coolant pump trip*
• Station blackout*
• Step reactivity insertion*
• Heat exchanger tube rupture
• Turbine stop valve closure
• Steam line break
• Loss of feedwater preheating
• LOCA in cleanup system
_____________
* Most limiting transients and described in this paper
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Safety margins were determined by
comparing maximum calculated
temperatures with limiting values

• Fuel rod cladding 725ºC
• Fuel 1000ºC
• Guard vessel 750ºC
• For the analyzed transients, the cladding temperature

was always the most limiting parameter
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Cladding temperatures remained below the
transient limit following a trip of the primary
coolant pumps
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The cladding temperature reached the
transient limit during a station blackout
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The RVACS was able to remove the
decay heat during a station blackout
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Reactivity feedback limited the effects
of a 0.2$ step reactivity insertion
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The cladding temperature remained below the limit
following the 0.2$ step reactivity insertion
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The actinide burner reactor exhibits excellent safety
characteristics, even with a failure to scram
• The maximum calculated temperatures remained

below the identified limits for all transients evaluated
• The cladding temperature limit was more restrictive

than the fuel and guard vessel temperature limits
• The station blackout was the most limiting transient

evaluated, and resulted in two temperature peaks
– The first peak occurred within the first minute and

was caused by the power-to-flow mismatch
following the pump trip

– The second peak occurred at 18 hours and is
associated with the balance between the power
generated by the core and removed by RVACS


