Idaho National Engineering and Environmental Laboratory

Performance and Safety Studies for Multi-Application, Small, Light Water Reactor

James E. Fisher, S. Michael Modro, Kevan D. Weaver INEEL

> Jose Reyes, John Groome Oregon State University

> > Pierre Babka NEXANT, Inc

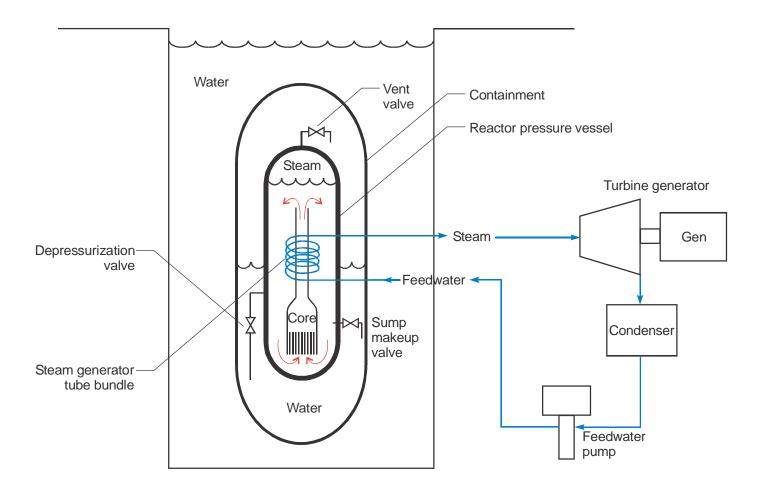
2002 RELAP5 Users Seminar Park City, Utah September 4-6, 2002

NERI Initiative

- Create a reactor plant concept
 - performance
 - safety
 - economy
- Test in an integral test facility
- Small, natural circulation light water reactor
- Electric power generation
- Process heat application with deployment in a variety of locations

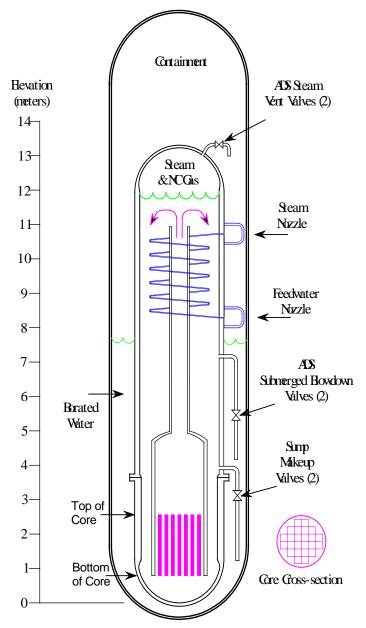
Significant Design Features

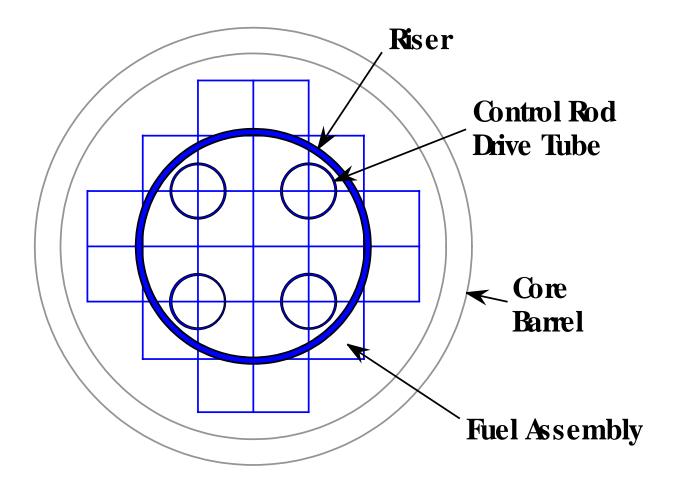
- Reactor and steam generator enclosed in a single vessel
- Natural circulation primary system
- Containment submerged in a pool of water
- Reduced reactor coolant pressure, steam pressure
- Simplified NSSS and balance-of-plant systems
- Refueling and maintenance simplified (pull and replace)



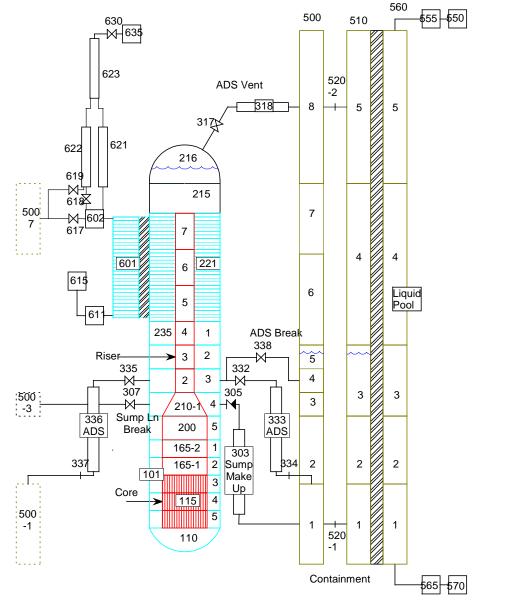
Steam Generator

- Located in the upper annular region of the pressure vessel
- Helical-tube design
- Once-through heat exchanger
- Approximately 1000 tubes, upwardly spiraling pattern
- Primary coolant flows downward in annular space (shell-side of heat exchanger)
- Cold feedwater enters tubes at bottom
- Superheated steam collected at the top


Simplified Heat Cycle Diagram


Containment and Internals

- Redundant piping systems
- 4-inch diameter ECCS piping
 - ADS steam vent lines (ASME code safety valves present but not shown)
 - ADS submerged blowdown lines
 - Sump makeup lines, present in previous version of design, now shown to be unnecessary



Top View of Fuel Bundle

RELAP5 Nodalization Diagram

Power Plant Boundary Conditions

- 35 MWe rated electrical load
- Steam supply pressure = 1.52 MPa (220 psia)
- Small superheat desired (~10 K)
- Thermal efficiency ~23% because of low temperature conditions
- NSSS must supply 150 MWt

Steady-state Operating Conditions

- Reactor core operates in subcooled forced convection
- Hot channel is in subcooled nucleate boiling
- Natural circulation flow in primary system

Primary pressure	7.8 MPa	1130 psia
Mass flow rate	596 kg/s	1311 lbm/s
Core inlet temperature	491.8 K	425.6 F
Core outlet temperature	544.4 K	520.3 F
Saturation temperature	567.4 K	561.7 F

FSAR Chapter 15 Guidelines for Current Generation PWRs

- Normal operation and operational transients
- Faults of moderate frequency
 - No fuel failure
 - No excessive system or containment pressure
- Infrequent faults
 - Minor fuel damage may result in outage
 - No significant radioactivity release
- Limiting faults
 - No public exposure beyond 10CFR100 guidelines
- Beyond design basis accidents

Normal Operation and Operational Transients

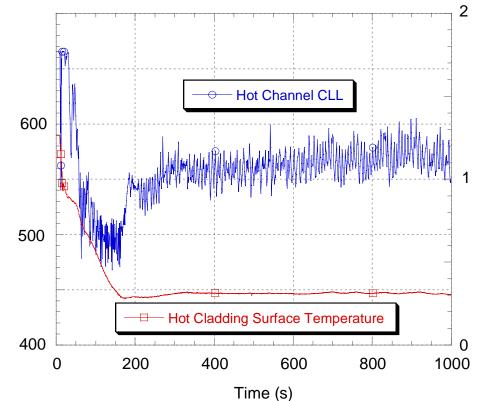
- Includes power operation, startup, hot shutdown, hot standby, cold shutdown, refueling
- Power Operation: satisfactory performance with listed parameter set
 - Hot assembly/hot fuel pin included in model
 - Hot assembly has 5% flow reduction, no mixing with average core
 - Axial peaking factor = 1.36
 - Hot assembly radial factor = 1.1
 - Hot fuel pin radial factor = 1.4
 - CHF Ratio ~ 7.2
- No assessment for non-power operation
- Analysis performed for beginning-of-life conditions only

Faults of Moderate Frequency

- Rod withdrawal accidents
 - Subcritical initial condition (not yet analyzed)
 - At power
- Inadvertent opening of steam vent valve or ADS blowdown valve at power
- Loss of normal feedwater
- Loss of AC power
- Turbine trip
- Feedwater flow increase
- Accidental depressurization of main steam system

Control Rod Withdrawal Accident at Power

- Reactivity ramp insertion at 0.115 \$/second
- High power scram @165 MW + 0.2 s delay
- *Maximum power = 170 MW*
- Minimum CHFR = 6.9
- No cladding surface temperature excursion
- ADS opens at 96 s on high system pressure
- Containment pressure < 0.7 MPa

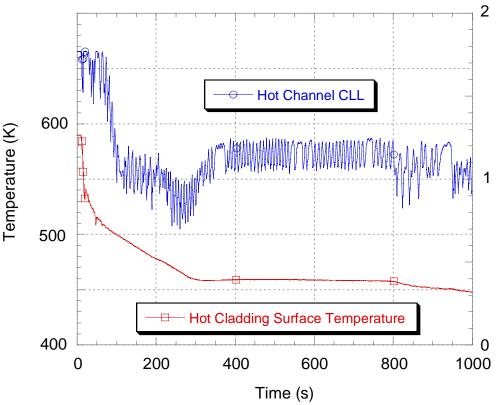


ADS Blowdown Line Nozzle Break

Temperature (K)

- More severe than inadvertent opening of ADS blowdown line valve
- Second ADS submerged line valve opens normally
- Failure of both sump makeup line valves to open
- Core collapsed liquid level sufficient to provide cooling
- No cladding thermal excursion

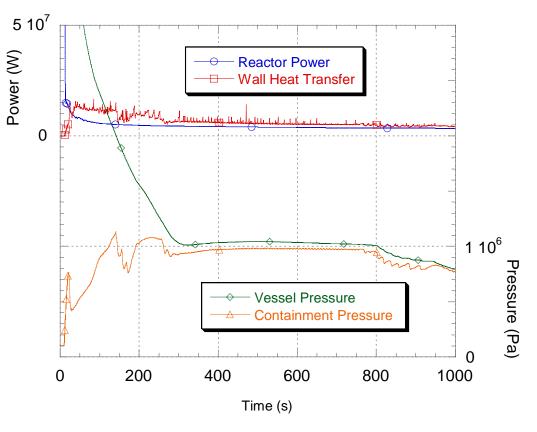
Hot Channel Collapsed Liquid Level and Hot Fuel Pin Cladding Surface Temperature



Steam Vent Line Nozzle Break

- More severe than inadvertent opening of vent line valve
- Failure of one ADS submerged line valve to open
- Failure of both sump makeup line valves to open
- Core collapsed liquid level sufficient to provide cooling
- No cladding thermal excursion

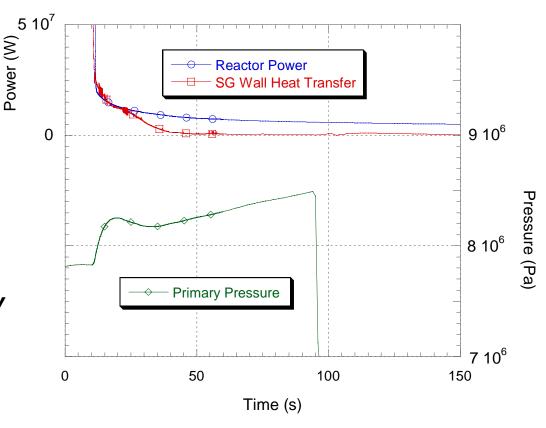
Hot Channel Collapsed Liquid Level and Hot Fuel Pin Cladding Surface Temperature



Steam Vent Line Nozzle Break

- Heat rejection through containment wall removes core decay heat
- ADS depressurizes primary system
 - establishes natural circulation flow and decay heat removal
 - limits maximum containment pressure
- Satisfies requirements for Faults of moderate frequency

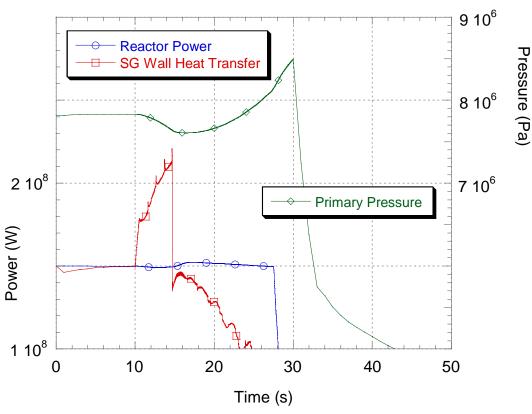
Reactor Power/Heat Rejection and Vessel/Containment Pressure



Loss of Feedwater

- Reactor scram 0.1 s after feedwater pump trip
- ADS actuates at 95 s, depressurizing primary system
- If reactor scram on SG low level, ADS actuates at 20 s.
- Resembles inadvertent opening of ADS blowdown valve
- Satisfies requirements for faults of moderate frequency
- More limiting operationally than turbine trip or loss of AC power

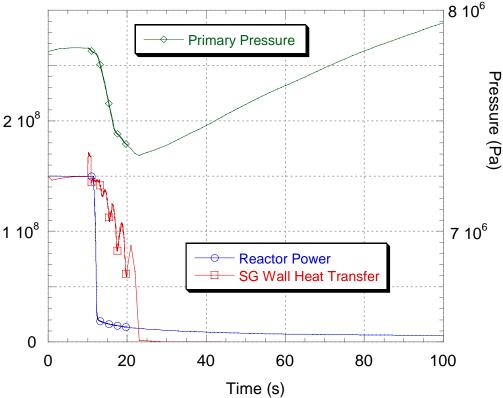
Reactor Power/Heat Rejection and Primary Vessel Pressure



Feedwater Flow Increase

- Feedwater flow ramp to 250% in 0.5 s
- Feedwater flow terminated on high SG CLL (1.2 m + 1 s) at 15 s
- Turbine tripped on low SG mass (300 kg + 0.5 s) at 27 s
- Reactor scram 0.1 s after turbine trip
- ADS actuates at 30 s
- Maximum reactor power is 152 MW at 17 s.
- Within limits for faults of moderate frequency

Reactor Power/Heat Rejection and Primary Vessel Pressure



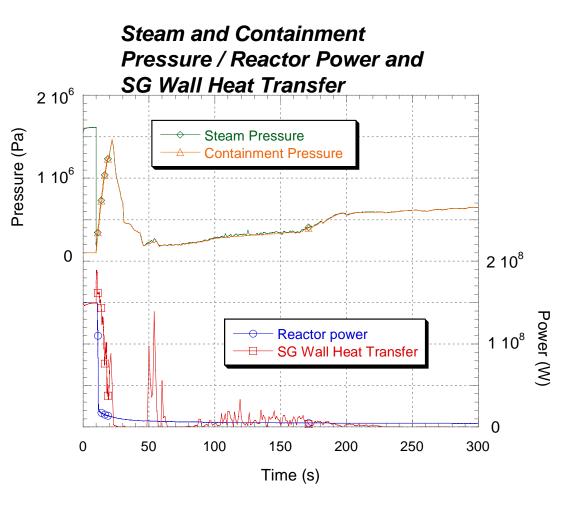
Accidental Depressurization of Main Steam System

- Main steam line break to atmosphere
- Feedwater trip and reactor scram occur at 10.9 s
- SG empty at 23 s
- Primary pressure decreases to 7.3 MPa, then increases slowly.
- Automatic depressurization sequence begins when primary pressure exceeds 8.5 MPa
 Automatic depressurization sequence begins when begins when and begins when b
- Within limits for faults of moderate frequency

Reactor Power/Heat Rejection and Primary Vessel Pressure

Infrequent Faults

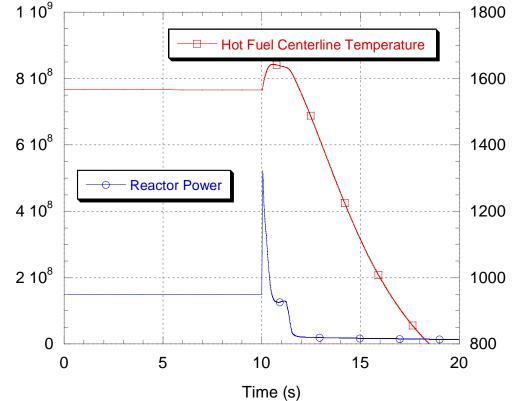
- Small ruptured primary system pipes or cracks in large primary system pipes
- Minor secondary system pipe breaks
- Improper fuel assembly position (loading accident)
- Complete loss of forced reactor coolant flow


Limiting Faults

- Major primary system pipe breaks
 - Steam vent line nozzle break
 - Failure of one ADS submerged line valve to open
 - Failure of both sump makeup line valves to open
 - ADS blowdown line nozzle break
 - Second ADS submerged line valve opens normally
 - Failure of both sump makeup line valves to open
 - Collapsed liquid level sufficient to provide cooling
 - No cladding thermal excursion
- Steam generator tube rupture (not analyzed)
- Fuel handling accident (not analyzed)
- *Major secondary system pipe breaks*
 - Main steam line break
- Rod ejection accident

Main Steam Line Break Inside Containment

- Break main steam line at nozzle
- Containment pressure maximum 1.5 MPa (218 psia)
- ADS initiation at 20 s (primary pressure < 7.4 MPa with containment pressure > 150 kPa)
- ADS submerged blowdown line effective in controlling containment pressure
- Within limits for limiting faults



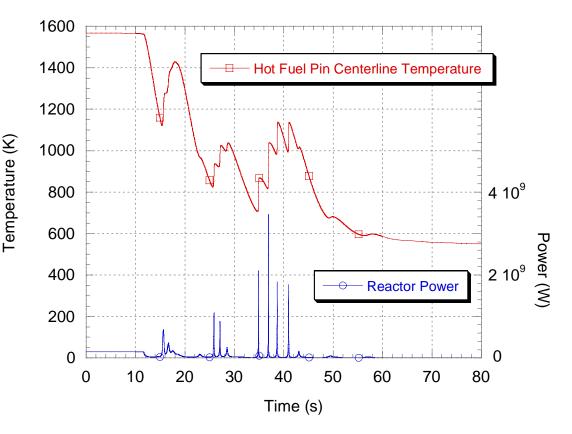
Hot Fuel Centerline Temperature

Rod Ejection Accident

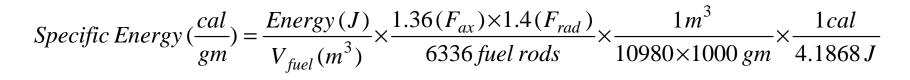
- 0.75 \$ inserted in 1 10⁻⁵ s
- Power spike to 520 MW
- Fuel centerline temperature increase 75 K in hot fuel rod
- Coolant temperature increase ~5 K
- **Reactor Power** Doppler (-0.005 \$/K) and Moderator (-0.08 \$/K) about equally effective for power turning
- Maximum fuel enthalpy increase 13 cal/gm

Reactor Power and Hot Fuel Centerline Temperature

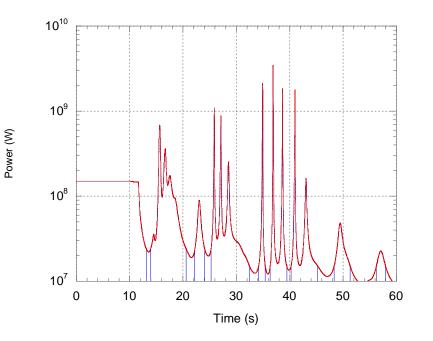
Beyond Design Basis Accidents

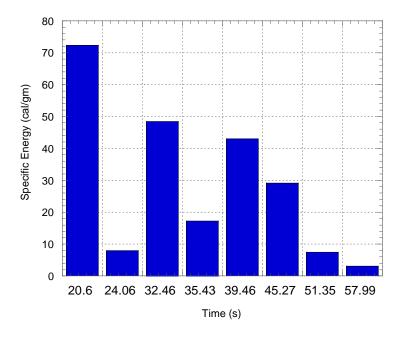

- Anticipated transients with failure to scram
 - Loss-of-feedwater
 - Inadvertent ADS steam vent valve opening
 - Inadvertent ADS blowdown valve opening

Inadvertent Opening of Steam Vent Valve with Failure of Reactor to Scram


- Power spikes to maximum of 3500 MW
- Maximum fuel enthalpy increase 72 cal/gm
- No significant fuel heatup
- No fuel damage
- Boron effective only at t > 500 s
- Within limits for credible accidents

Hot Fuel Centerline Temperature and Reactor Power




Calculation of Maximum Fuel Pin Energy Density

Reactor Power Intervals

Energy Deposition in Hot Fuel Pin

Conclusions

- Calculations performed for beginning-of-life conditions
- No significant transient cladding temperature excursions
- Containment pressure within acceptable limits
- All transients demonstrate stable system end state
 - Adequate coolant recirculation between containment and vessel
 - Stable vessel collapsed liquid level
 - Adequate cooling of reactor core
 - Adequate heat is rejected to ultimate heat sink