

Idaho National Engineering and Environmental Laboratory

Fluent/RELAP5-3D[©] Coupled Code

Richard Schultz, Walter L. Weaver, &

Greg Nurnberg

IRUG 2003

The Fluent RELAP5-3D Coupling..

- Background
- What we're doing
- Where we are at now
- Our future plans

Overall Perspective...

- DOE's Generation IV Roadmap effort is reaching completion. It is a part of national strategy to gain public acceptance of nuclear power, and to encourage vendors and utilities to consider nuclear power as an option again.
- Gen IV has identified 6 advanced concepts for further development; US will probably focus on half: Very High Temperature Reactor, Gas-Cooled Fast Reactor, & Supercritical Water Reactor. Others are the Pb-Bl, Na-cooled, and molten salt.
- In addition to Gen IV, there will also be Gen III advanced concepts to study, e.g., PBMR

Very High-Temperature Reactor (VHTR)

Characteristics

•He coolant

- >1000°C outlet temperature
- •600 MWe
- Solid graphite block core based on GT-MHR

- High thermal efficiency
- Hydrogen production
- Process heat applications
- High degree of passive safety

Gas-Cooled Fast Reactor (GFR)

Characteristics

- He coolant
- 850°C outlet temperature
- direct gas-turbine conversion cycle – 48% efficiency
- 600 MW_{th}/288 MW_e
- Several fuel options and core configurations

Benefits

• Waste minimization and efficient use of uranium resources

Supercritical Water Reactor (SCWR)

Characteristics

- Water coolant at supercritical conditions
- 500°C outlet temperature
- 1700 MWe
- Simplified balance of plant

- Efficiency near 45% with excellent economics
- Thermal or fast neutron spectrum

Pb/Bi Reactor – Cartridge Core (Pb/Bi Battery)

Characteristics

- Pb or Pb/Bi coolant
- 540°C to 750°C outlet temperature
- 120-400 MWe
- 15-30 year core life

- Distributed electricity generation
- Hydrogen and potable water
- Cartridge core for regional fuel processing
- High degree of passive safety
- Proliferation resistance through long-life cartridge core

Sodium Liquid Metal-Cooled Reactor (Na LMR)

Characteristics

- Sodium coolant
- 150 to 500 MWe
- Metal fuel with pyro processing / MOX fuel with advanced aqueous

- Consumption of LWR actinides
- Efficient fissile material generation

Molten Salt Reactor (MSR)

Characteristics

- Fuel: liquid Li, Be, Th and U fluorides
- 700°C outlet temperature
- 1000 MWe
- Low pressure (<0.5 MPa) & high temperature (>700°C)

- Low source term due to online processing
- Waste minimization and efficient use of uranium resources
- Proliferation resistance through low fissile material inventory

INEEL

Idaho National Engineering and Environmental Laboratory

Fluent & RELAP5-3D Are Being Coupled to...

- Develop tools to analyze advanced systems in the detail required—so:
- Enable an entire system to be modeled using 1-D features of RELAP5
- While modeling some sections of systems in great detail using Fluent

Development Underway Using Gas-Cooled Reactors as Basis

- PBMR is focus
- Working fluid: helium
- We'll model input plenum, perhaps a portion of the core, and the outlet plenum.

International Community has also Recognized this need...

IAEA recently announced a meeting to discuss: "...interest in the application of 3-dimensional CFD software as a supplement to or in combination with system codes, which provide the boundary conditions for CFD codes." Problems under discussion include:

- Evaluation of performance of passive safety features;
- Local phenomena leading to cladding ruptures;
- Multidimensional TH in various components;
- Liquid/gas stratification and interface tracking; and
- Bubble dynamics in suppression pools."

We view Fluent RELAP5-3D coupling as applicable to...

• Most scenarios in VHTRs, gas-cooled fast reactors, Pb-Bi reactors, and liquid sodium reactors.

• Some specific phenomena in water-cooled systems such as supercritical water reactors.

Status

- Fluent and RELAP5-3D are coupled.
- Writing User Guidelines
- Will focus on latter part of V&V matrix over next year.

RELAP5-3D provides 1-D boundary conditions to Fluent

- Fluent performs 3-D calculation
- Inlet velocity profile, for example, is flat if not modified.
- Inlet profile can be modified to known condition if desired using Fluent user defined functions.
- Fluent 3-D output converted to 1-D for RELAP5-3D.

A Portion of V&V Matrix

Experiment or Case	Working Fluid	Phenomena of Interest or Objective	PBMR Region of Interest	Reference
Turbulent flow in pipe section	Helium	Mesh coupling between Fluent & RELAP5	PBMR inlet pipe	Streeter, V., 1961
Turbulent flow in backward facing step with heat transfer	Air	 Mesh coupling between Fluent & RELAP5 Flow profiile calculated by Fluent 	PBMR inlet pipe and inlet plenum	Baughn, J. W., et al, 1984
Neutronics-fluid Ineraction in core region(LWR)	Water	RELAP5/ATHENA neutronics coupling with Fluent mesh	Core; although this data set is for geometry unlike PBMR,	Bovalini, R., et al, 2001 (used by permission of Y. Hassan)
Countercurrent two-phase flow	Water & SF ₆	 Mesh coupling between Fluent & RELAP5 Flow behavior calculated by Fluent 	Potential pipe break and countercurrent flow at break when not choked	Stewart, W. T., et al, 1992.
Flow through packed-bed	Air	Fluent's capability of calculating flow through portion of packed bed.	Core	Calis, H. P., et al, 2001.

We'll focus on PBMR...

Relevant V&V Cases...

- Turbulent pipe flow.
- Backward facing step
- Packed beds

Backward-Facing Step: Expanding Flow with Heat Transfer

- Purpose: Study coupling between Fluent—RELAP5/ATHENA and validate Fluent's capability to model flow distribution downstream of step.
- Region of applicability: entrance flow into PBMR
 COre.
 ABRUPT EXPANSION REGION
 MEATED SECTION
 DOWINSTREAM
 FUTTY LEMET

Backward-Facing Step (Cont-3)

Ratio of local Nu to Nu for fully-developed flow as function of length for various turbulence models in Fluent—compared to Baughn data

Backward-Facing Step (Cont-4)

Typical velocity profiles calculated by Fluent.

Fluent Calculation of Flow Through Pebble Bed

- Calculation was performed using CFX5
- Ageement with data within 10%.
- Both laminar flow and turbulent flow were modeled.

V&V Packed Bed Data-CFX5 Comparison: Within 10%

Summary

- The Fluent-RELAP5 coupling is functional.
- First system case to be studied: PBMR.
- The V&V matrix problems are being used.
- User Guideline document is being written—expect first draft at year end.