RELAP5/ATHENA Users Seminar 2004 (Aug. 25-27, Sun Valley, ID)

# Water Bulk Acceleration by Rapid Air Injection

| * M. Adachi | F. Inasaka |
|-------------|------------|
| H. Murata   | I. Aya     |

National Maritime Research Institute Tokyo, Japan

# Contents

- $1 \cdot \text{Introduction}$
- $2 \cdot \text{Experiment}$
- $3 \cdot \text{Analysis}$
- $4 \cdot \text{Summary}$
- $5\,\text{.}$  Appendix

### Introduction



OHP2

2 · Experiment



## Large vessel apparatus

## Small vessel apparatus

### 2.Experiment (Cont'd)





#### Air outlet (photo)



- One outlet
- Opening by glass plate fracture



Pressure transducers to detect water hammer under orifice plate

Rapid injection of pressurized air into the water-filled vessel (The large vessel apparatus)





Bubble growth after air injection (small vessel, visualization)

```
Initial conditions

P_0(Initial pressure at the air tank) =

1.0MPa

H_0^*(Depth of water layer to outlet, non dim. )=0.8

[as 0.345m in the small vessel]

Pacarding apode 500 frames/s
```

2 · Experiment (Cont'd)



Elevation of the air penetration

2 · Experiment (Cont'd)



Predicted W.H. pressure at the penetration elevation

OHP7

#### 3 · Analysis

# Code requirement for analysis of the bulk acceleration

- . High reliability in heat and hydrodynamic analysis of nuclear plant
- Multi-dimensional & Multi-phase analysis
- . Each fluid is treated as independent in the code
- Stable computation under high acceleration (100 times of  $g = 9.8 \text{ m/s}^2$ )



RELAP5-3D is adapted, because ... Version up from RELAP5/MOD3 Multi-Dimensional Component (M.D.C) is introduced 2 fluid model (gas and water) is applied Good result qualitatively in 1D analysis

3 · Analysis (Cont'd)



Analysis model for the large vessel exp.

#### OHP10

# List of components in the analytical model

| Componer              | nt Name          | Dimension            | Model            | Number of<br>volumes<br>(junctions) | Remarks                                           |
|-----------------------|------------------|----------------------|------------------|-------------------------------------|---------------------------------------------------|
| Pressurized Airtank   |                  | 1D                   | Pipe<br>Componet | 16                                  |                                                   |
| Air Supply Pipe       |                  | 1D                   | Pipe<br>Componet | 15                                  |                                                   |
| Outlet                |                  | 1D                   | Valve<br>(motor) | (1)                                 | Opening rate and<br>property table were<br>given. |
| Containment<br>Vessel | Lower<br>Chamber | 2D<br>(Cylinderical) | M. D. C.         | 360 = 9[r] *<br>40[z]               | Width of nodalized volume was constant.           |
|                       | Orifice          | 1D                   | Junction         | (6)                                 |                                                   |
|                       | Upper<br>Chamber | 2D<br>(Cylinderical) | M. D. C.         | 360 = 9[r] *<br>40[z]               | Width of nodalized volume was constant.           |



Void fraction in the lower chamber after pressurized air injection ; Large vessel  $\ P_0=2.0MPa, H_0^*=1.0 (H_0=1.0m)$  $\rightarrow$  Acceleration was simulated enough qualitatively 3 · Analysis (Cont'd)

Comparison with the large vessel experiment ;  $P_0=2.0MPa$ ,  $H_0^*=1.0$  [1.0m]



3. Analysis (Cont'd)

# Factors of the bulk acceleration (transaction at interface)

- Condensed gas with momentum





Cause of error between the experiment and the analysis

- Under-estimation of interfacial friction against 2D critical air flow Shorter critical flow condition time, better result quantitatively
- High elevation; decreased pressure drop due to bubble growth
- The penetration continues critical flow condition.

4. Summary

# Summary

- 1. 2D analysis by RELAP5-3D simulated water bulk acceleration by rapid air injection qualitatively.
- 2. Improvement of interfacial friction force against 2D critical gas flow is required to estimate scale of water hammer load by the acceleration.

# Next analysis plan

- Full 2D/3D analysis ; Effect of 2D/3D connection
- Water bulk acceleration by rapid <u>steam</u> injection (Influence of condensation)

5. Appendix

Improvement request to next version of RELAP5-3D

- More volumes along *x*/*r* direction in the Multi-Dimensional Component

Now: 1 to 9

Next: 1 to 20 (99?)

- Connection among the Multi-Dimensional Components



Following slides are used only At Q & A time.

# Expected quantity of molten debris at the experiment

| Type of apparatus                        |      | Large vessel | Small vessel |           |
|------------------------------------------|------|--------------|--------------|-----------|
| Volume of the air tank [m <sup>3</sup> ] |      |              | 0.47         | 0.037     |
| P <sub>0</sub><br>[MPa]                  | 0.27 | Mass [kg]    | 1.518E+00    | 1.195E-01 |
|                                          |      | Vol. [L]     | 3.035E-01    | 2.390E-02 |
|                                          | 0.5  | Mass [kg]    | 2.811E+00    | 2.213E-01 |
|                                          |      | Vol. [L]     | 5.621E-01    | 4.425E-02 |
|                                          | 1    | Mass [kg]    | 5.621E+00    | 4.425E-01 |
|                                          |      | Vol. [L]     | 1.124E+00    | 8.850E-02 |
|                                          | 2    | Mass [kg]    | 1.124E+01    | 8.850E-01 |
|                                          |      | Vol. [L]     | 2.248E+00    | 1.770E-01 |

\* In ideal steam explosion, 0.62 kg steam is generated by 1kg grained debris of 2842K, under atmospheric pressure surrounding.
\* Weight ratio of the debris is assumed as 5.0.



Growing bubble (visualization);  $P_0=0.5MPa$ ,  $H_0^*=0.8$ 



## RISING WATER BULK (LARGE VESSEL $P_0 = 2.0 \text{ MPA} \cdot H_0^* = 1.2$ )



## RISING WATER BULK (SMALL VESSEL $P_0=2.0$ MPA $H_0^*=1.2$ )

## Valve property table





 $(P_0=2.0MPa, H_0=1.0m)$ 

