

# Università di Pisa



Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione

# <u>11% UPPER PLENUM BREAK:</u> <u>APPLICATION OF RELAP5-30<sup>©</sup></u> <u>AND</u> <u>COMPARISON WITH OTHER CODES</u>

Presented by: A. Del Nevo (a.delnevo@ing.unipi.it)

## **2004 RELAP5/ATHENA**

International Users Seminar

Sun Valley Inn, Sun Valley, Idaho, August 25-27, 2004

# **CONTENTS**

- **1. Overview of the nodalizations**
- 2. 11% UP post test analyses
  - Relap5Mod3.3 beta code
  - Cathare2v1.5b code
  - > *Relap5-3D*<sup>©</sup> v2.2.4
    - <u>Reference case</u>
    - <u>Sensitivity studies</u>
    - <u>Henry Fauske</u>
- 3. FFT-BM application (quantitative accuracy evaluation of the results)
- 4. Conclusions and future activities



User

Choices

# **INTRODUCTION**

The nodalizations have been carried out using a standard methodology and all the steps foreseen have been fulfilled

• The nodalizations have been carried out using the experience acquired in the DIMNP



• The on transient level qualification foressen in our procedure has been fulfilled



Code Instructions

>NODALIZA1

Data



# CIAU & UMAE FLOW DIAGRAM





### Overview of the nodalization **PSB LAYOUT AND CODES INPUT DECK**





## **RELAP5 NODALIZATION**





547

# **RELAP5 NODALIZATION**

A sliced approach is used in the discretization. It is specifically suitable for calculating scenarios that imply fluid stagnation in different parts of the loop, or scenario characterized by low driving forces (i.e. natural circulation).

#### **ADOPTED CODE RESOURCES**

| N. nodes                   | 2492  |
|----------------------------|-------|
| N. junctions               | 2742  |
| N. heat structures         | 2231  |
| N. mesh points             | 11383 |
| N. core heat<br>structures | 10    |





## **PSB LAYOUT AND CODES INPUT DECK**





## **CATHARE2V1.5B NODALIZATION**

#### **ADOPTED CODE RESOURCES**

| PARAMETER                               | VALUE     |
|-----------------------------------------|-----------|
| Code                                    | Cathare2  |
| 1. Total N. of Hydraulic Modules        |           |
| -primary side                           | 63 (1742) |
| -secondary side                         | 20 (64)   |
| -total                                  | 83 (1806) |
| •2. N. OF JUNCTIONS                     |           |
| -primary side                           | 92        |
| -secondary side                         | 16        |
| -total                                  | 108       |
| •3. N. OF THERMAL STRUCTURES            |           |
| -primary side                           | 117       |
| -secondary side                         | 24        |
| •total                                  | 141       |
| •5. NUMBER OF CORE ACTIVE<br>STRUCTURES | 10        |
| •7. N. OF MESH POINTS                   |           |
| -core slabs                             | 120       |
| -steam generator slabs                  | 392       |
| 9. OVERALL VOLUME (m <sup>3</sup> )     | 1.78927   |





## **11% UP BREAK POST TEST ANALYSES**

The experimental data available for the selected post test analysis is a test called "UP 11% break". It simulates a rupture on one upper plenum accumulator line. It is a counterpart of a test performed in an other facility (ISB-VVER) and the initial and boundary conditions derive from that test. UP 11% break test is also used by EREC as shake-down test for the PSB behaviour. The break is side oriented, it is installed 200 mm under the hot legs connection and discharges in a catch tank atmospheric pressure where an at appropriate system measured the ejected flow rate.

| Imposed sequence of                   | of main events                  |
|---------------------------------------|---------------------------------|
| EVENT                                 | TIME AND/OR SET<br>POINT VALUES |
| Break opening                         | 0 s                             |
| SCRAM signal                          | 5 s                             |
| Pumps coastdown initiation            | 10 s, full stop at 14 s         |
| SG SS isolated                        | 5 s                             |
| Normal SG SS FW supply stopped        | 15 s                            |
| Pressurizer internal heaters stop     | Prz pressure = 13.73 Mpa        |
| SG SS safety valves opening           | Not operative                   |
| Safety injection signal (HPIS active) | Primary pressure = 10.5 Mpa     |
| Accumulators injection start          | Primary pressure = 5.89 MPa     |
| Accumulators injection stop           | About 900 s                     |
| End of transient                      | 1037 s                          |



### 11% UP post test analyses STEADY STATE CONDITIONS

The main parameters assumed for the steady state conditions has been respected

|                                                                                   | Code                                     | Actual                                           | Set value                            |                                      |                              |  |  |  |  |
|-----------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------|--|--|--|--|
| Parameter                                                                         | Measure                                  | value                                            | Cathare2V1.5                         | R5Mod3.3                             | R5-3D                        |  |  |  |  |
| PRIMARY SIDE                                                                      |                                          |                                                  |                                      |                                      |                              |  |  |  |  |
| Pressure in Upper Plenum (MPa)                                                    | YC01P17                                  | 16.9±0.06                                        | 16.9                                 | 16.94                                | 16.94                        |  |  |  |  |
| Coolant temperature (K)<br>-at DC inlet<br>-at UP outlet                          | YA01-04T02<br>YA01-04T03                 | 559.7±3<br>589.7±3                               | 560.6<br>589.8                       | 563<br>592                           | 563<br>592                   |  |  |  |  |
| Flow rate in circulation loops (kg/s)<br>-loop 1<br>-loop 2<br>-loop 3<br>-loop 4 | YA01F01<br>YA02F01<br>YA03F01<br>YA04F01 | 2.3±0.05<br>2.3±0.05<br>2.3±0.05<br>2.4±0.05     | 2.29<br>2.29<br>2.29<br>2.29<br>2.27 | 2.32<br>2.32<br>2.32<br>2.32<br>2.32 | 2.32<br>2.32<br>2.32<br>2.33 |  |  |  |  |
| Power of FRS bundle (kW)                                                          | YC01N01                                  | 1520±15                                          | 1521                                 | 1520                                 | 1521                         |  |  |  |  |
| By-pass power (kW)                                                                | YC01N02                                  | 17.4±0.7                                         | 17.4                                 | 17.4                                 | 17.4                         |  |  |  |  |
| Coolant level in PRZ (m)                                                          | YP01L02                                  | 6.99±0.3                                         | 6.94 (8.83)                          | 7.05 (8.949)                         | 7.06 (8.950)                 |  |  |  |  |
|                                                                                   | SECO                                     | NDARY SII                                        | DE                                   |                                      |                              |  |  |  |  |
| Pressure (MPa)<br>-SG1<br>-SG2<br>-SG3<br>-SG4                                    | YB01P01<br>YB02P01<br>YB03P01<br>YB04P01 | 7.43±0.05<br>7.47±0.05<br>7.33±0.05<br>7.43±0.05 | 7.42<br>7.40<br>7.40<br>7.40         | 7.47<br>7.47<br>7.45<br>7.47         | 7.43<br>7.43<br>7.42<br>7.43 |  |  |  |  |
| Level (m)<br>-SG1<br>-SG2<br>-SG3<br>-SG4                                         | YB01L01<br>YB02L01<br>YB03L01<br>YB04L01 | 1.71±0.07<br>1.71±0.07<br>1.84±0.07<br>1.74±0.07 | 1.71<br>1.71<br>1.80<br>1.72         | 1.71<br>1.71<br>1.89<br>1.73         | 1.71<br>1.71<br>1.88<br>1.73 |  |  |  |  |
|                                                                                   |                                          | ACC-S                                            |                                      |                                      |                              |  |  |  |  |
| Pressure (MPa)<br>-ACCU 1<br>-ACCU 2<br>-ACCU 3<br>-ACCU 4                        | TH01P01<br>TH02P01<br>TH03P01<br>TH04P01 | 5.8±0.03<br>5.9±0.03<br>5.9±0.03<br>5.9±0.03     | 5.9<br>5.9<br>5.9<br>5.9             | 5.9<br>5.9<br>5.9<br>5.9             | 5.9<br>5.9<br>5.9<br>5.9     |  |  |  |  |
| Level (m)<br>-ACCU 1<br>-ACCU 2<br>-ACCU 3<br>-ACCU 4                             | TH01L01<br>TH02L01<br>TH03L01<br>TH04L01 | 4.84±0.07<br>4.84±0.07<br>4.86±0.07<br>4.85±0.07 | 4.84<br>4.84<br>4.84<br>4.84<br>4.84 | 4.84<br>4.84<br>4.86<br>4.85         | 4.84<br>4.84<br>4.86<br>4.85 |  |  |  |  |



## PRZ PRESSURE – EXP, R5M3.3, C2





## ACCU 1 PRESSURE – EXP, R5M3.3, C2





## **INTEGRAL BREAK FLOW – EXP, R5M3.3, C2**





Mass (kg)

14

## Reference cases ROD CL TEMP – EXP, R5M3.3, C2









## Reference cases RESULTS - EXP, R5M3.3, R5-3D







## PRZ PRESSURE – EXP, R5M3.3, R5-3D





## ACCU 1 PRESSURE – EXP, R5M3.3, R5-3D





### INTEGRAL BREAK FLOW – EXP, R5M3.3, R5-3D





### Reference cases ROD CL TEMP – EXP, R5M3.3, R5-3D





## 11% UP post test analyses SENSITIVITY STUDY

**Different calculation has been performed in order to evaluate the infuence of the dicharge coefficients** variation to the final results

| Name input                        | Subcooled<br>discharge<br>coefficient | Two-phase<br>discharge<br>coefficient | Superheated<br>discharge<br>coefficient | Average accuracy:<br>Prim. press. / Total | Note |
|-----------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------|------|
| Pi_PsbUPbreak10f_A1               | -                                     | -                                     | -                                       | 0.126 / <b>0.351</b>                      | NQ   |
| Pi_PsbUPbreak10f_A2               | 0.75                                  | 1                                     | 1                                       | 0.114 / <b>0.360</b>                      | NQ   |
| Pi_PsbUPbreak10f_A3               | 0.65                                  | 1                                     | 1                                       | 0.116 / <b>0.354</b>                      | NQ   |
| Pi_PsbUPbreak10f_A7               | 0.65                                  | 0.9                                   | 0.8                                     | 0.089 / <b>0.337</b>                      | Q    |
| D: DahliDhnaalz10 <del>6 HE</del> |                                       |                                       | 0 0772 / 0 347                          | Q                                         |      |
| PI_PSDUPDreak101_HF               | Hen                                   | ry Fauske option                      | 0.077570.347                            |                                           |      |



### Sensitivities studies **PRZ PRESSURE – RELAP5-3D<sup>©</sup>**





### Henry - Fauske PRZ PRESSURE – EXP, R5M3.3, R5-3D

WinGraf 4.1 - 08-10-2004





### 11% UP post test analyses FFT-BM APPLICATION

| Parameters |                                 | Relap5/Mod3.3<br>Pi_PsbUPbreak10f |      | Relap5-3D© v2.2.4<br>Pi_PsbUPbreak10f_A1 |      | Cathare2v1.5b<br>PSB_04e10_test#1 |       |  |
|------------|---------------------------------|-----------------------------------|------|------------------------------------------|------|-----------------------------------|-------|--|
| #          | Measured parameter              | AA                                | WF   | AA                                       | WF   | AA                                | WF    |  |
| 1          | PR7 pressure                    |                                   | 0.06 | 0.12                                     | 0.03 | 0.10                              | 0.062 |  |
| 2          | SG2 pressure - secondary side   | 0.1                               | 0.05 | 0.13                                     | 0.04 | 0.09                              | 0.042 |  |
| 3          | SG3 pressure - secondary side   | 0.07                              | 0.05 | 0.30                                     | 0.05 | 0.24                              | 0.058 |  |
| 4          | ACC1 pressure                   | 0.1                               | 0.02 | 0.23                                     | 0.01 | 0.08                              | 0.019 |  |
| 5          | ACC2 pressure                   | 0.1                               | 0.03 | 0.21                                     | 0.01 | 0.08                              | 0.025 |  |
| 6          | Core inlet fluid temperature    | 0.07                              | 0.03 | 0.12                                     | 0.02 | 0.32                              | 0.052 |  |
| 7          | Core outlet fluid temperature   | 0.07                              | 0.03 | 0.11                                     | 0.02 | 0.10                              | 0.034 |  |
| 8          | Upper head fluid temperature    | 0.79                              | 0.04 | 0.75                                     | 0.05 | 0.82                              | 0.057 |  |
| 9          | Heater rod temp. (bottom level) | 0.12                              | 0.06 | 0.14                                     | 0.04 | 0.24                              | 0.069 |  |
| 10         | Heater rod temp. (middle level) | 0.78                              | 0.14 | 0.57                                     | 0.08 | 0.99                              | 0.068 |  |
| 11         | Heater rod temp. (high level)   | 0.04                              | 0.13 | 0.87                                     | 0.05 | 1.00                              | 0.043 |  |
| 12         | Integral break flow rate        | 0.26                              | 0.06 | 0.09                                     | 0.06 | 0.06                              | 0.055 |  |
| 13         | Break flow rate                 | 1.98                              | 0.05 | 0.67                                     | 0.14 | 0.98                              | 0.162 |  |
| 14         | Primary side total mass         | 0.97                              | 0.05 | 0.14                                     | 0.08 | 0.18                              | 0.065 |  |
| 15         | Core power                      | 0.16                              | 0.07 | 0.97                                     | 0.12 | 0.13                              | 0.068 |  |
| 16         | DP inlet-outlet SG 2            | 1.10                              | 0.13 | 0.99                                     | 0.13 | 0.98                              | 0.134 |  |
| 17         | DP SG 2 inlet hot header top    | 0.06                              | 0.13 | 0.45                                     | 0.08 | 0.34                              | 0.090 |  |
| 18         | ECCS flow rate                  | 0.48                              | 0.10 | 0.04                                     | 0.12 | 0.06                              | 0.136 |  |
|            | TOTAL                           | 0.4                               | 0.05 | 0.35                                     | 0.04 | 0.36                              | 0.221 |  |



### 11% UP post test analyses FFT-BM APPLICATION – SENSTIVITY STUDIES

| Parameters |                                 | Relap5-3D© v2.2.4<br>Pi_PsbUPbreak10f_A2 |      | Relap5-3D© v2.2.4<br>Pi_PsbUPbreak10f_A3 |      | <b>Relap5-3D<sup>©</sup> v2.2.4</b><br>Pi_PsbUPbreak10f_A7 |       |
|------------|---------------------------------|------------------------------------------|------|------------------------------------------|------|------------------------------------------------------------|-------|
| #          | Measured parameter              | AA                                       | WF   | AA                                       | WF   | AA                                                         | WF    |
| 1          | PRZ pressure                    |                                          | 0.05 | 0.116                                    | 0.03 | 0.089                                                      | 0.04  |
| 2          | SG2 pressure - secondary side   | 0.12                                     | 0.04 | 0.13                                     | 0.04 | 0.04                                                       | 0.05  |
| 3          | SG3 pressure - secondary side   | 0.30                                     | 0.05 | 0.30                                     | 0.05 | 0.09                                                       | 0.06  |
| 4          | ACC1 pressure                   | 0.22                                     | 0.01 | 0.22                                     | 0.02 | 0.22                                                       | 0.02  |
| 5          | ACC2 pressure                   | 0.19                                     | 0.01 | 0.19                                     | 0.01 | 0.19                                                       | 0.01  |
| 6          | Core inlet fluid temperature    | 0.12                                     | 0.02 | 0.12                                     | 0.02 | 0.12                                                       | 0.02  |
| 7          | Core outlet fluid temperature   | 0.10                                     | 0.02 | 0.10                                     | 0.02 | 0.10                                                       | 0.02  |
| 8          | Upper head fluid temperature    | 0.75                                     | 0.05 | 0.75                                     | 0.05 | 0.75                                                       | 0.05  |
| 9          | Heater rod temp. (bottom level) | 0.19                                     | 0.05 | 0.14                                     | 0.04 | 0.14                                                       | 0.04  |
| 10         | Heater rod temp. (middle level) | 0.89                                     | 0.06 | 0.57                                     | 0.08 | 0.60                                                       | 0.08  |
| 11         | Heater rod temp. (high level)   | 0.97                                     | 0.05 | 0.91                                     | 0.05 | 0.89                                                       | 0.06  |
| 12         | Integral break flow rate        | 0.08                                     | 0.05 | 0.08                                     | 0.06 | 0.09                                                       | 0.06  |
| 13         | Break flow rate                 | 0.70                                     | 0.13 | 0.70                                     | 0.14 | 0.69                                                       | 0.13  |
| 14         | Primary side total mass         | 0.14                                     | 0.08 | 0.14                                     | 0.08 | 0.14                                                       | 0.08  |
| 15         | Core power                      | 0.16                                     | 0.07 | 0.06                                     | 0.12 | 1.04                                                       | 0.11  |
| 16         | DP inlet-outlet SG 2            | 0.96                                     | 0.13 | 0.96                                     | 0.13 | 0.96                                                       | 0.13  |
| 17         | DP SG 2 inlet hot header top    | 0.43                                     | 0.08 | 0.40                                     | 0.08 | 0.43                                                       | 0.08  |
| 18         | ECCS flow rate                  | 0.04                                     | 0.12 | 0.04                                     | 0.12 | 0.05                                                       | 0.12  |
| TOTAL      |                                 | 0.360                                    | 0.04 | 0.354                                    | 0.04 | 0.337                                                      | 0.048 |



# **CONCLUSIONS (1 of 2)**

The test 11% UP break has been analyzed with *Relap5/Mod3.3beta, Relap5-3D<sup>o</sup>v2.2.4, and Cathare2v1.5b* codes

In particular:

- The analyses performed, during the set up of the nodalizations, have showed that particularly critical are the break schematization, the hydroaccumulator modeling and the loss coefficient in the break.
- The difficulties to reproduce the dry-out in the core have been highlighted.
- For each code has been investigated the quantitative accuracy evaluation of the results by the application of the FFT-BM and the obtained results have been compared.
- Sensitivity studies have been performed in order to evaluate the discharge coefficient, used in the critical flow model, suitable to get results similar to the experimental trends with Relap5-3D code.
- The activation of the Henry Fauske option in Relap5-3D code has shown results very similar to the Relap5Mod3.3 code and in good agreement with the experimental results.



# **CONCLUSIONS (2 of 2)**

- These nodalizations (Relap5 and Cathare2) will be applied to other experiments performed in the PSB facility in the framework of the Tacis and the OECD projects (at present the preliminary pre-tests have been almost finished for 12 experiments in the framework of the Tacis project with both codes).
- The results from the analyses will be expected to enlarge the error database of the CIAU method for Relap5 code and to realize the first database for Cathare2 code. At present this methodology has been already applied several times (e.g. including Angra-2, Kozloduy-3 and Mochovce analyses ). It must been stressed that the error database enlargement or realization must be achieved without changes in the nodalisation structure and in user options.

