

Modeling of A Power Conversion System with RELAP5-3D and Associated Application to Feedwater Blowdown Licensing Analysis for the LungMen ABWR Plant

Prepared by: Thomas K.S. Liang

Institute of Nuclear Energy Research, Taiwan

Contents

- Introduction
- **二 ▸ Event Description**
- \equiv Modeling Description
- 四、Modeling Sensitivity Study
- 五、**General Assumptions for**

Event Licensing Analysis

- 六、**Results**
- 七、Conclusions
- 八、**Future Work**

- Conventionally, the limiting break for BWR containment design is the recirculation line break.
- In the ABWR design, the jet pumps driven by the recirculation loops are replaced by the reactor internal pumps (RIPs).
- □ As a result, the limiting break for ABWR containment design shifts to the Feedwater Line Break (FWLB).

Introduction

Reactor Design of Typical ABWR

Introduction

- The licensing analysis of FW line break with RELAP5-3D/K, and the RELAP5-3D/K is an Appendix K version of RELAP5-3D.
- To adequately calculate the blowdown flow and enthalpy for the event of FW line inboard break, the BOP modeling scope includes all the necessary components and systems.
 - Main feedwater system;
 - Main condainson;
 - ≻ Main steam system
 - ≻ Main turbine system
 - Turbine driven feedwater pumps

Introduction

NPP4 System Simulation Diagram

- □ For the event of FWLB, blowdown flow and enthalpy from both RPV & BOP are the most essential parameters to be calculated.
- The early BOP blowdown flow will be limited by choking at either the break end or the internal venturi.
- The early FW blowdown will drive more extraction steam from MS system to FW heaters.
- As a result of MSIV isolation during the early blowdown stage, the steam supply cannot be maintained and steam pressure will drop rapidly.
- After the run out and coast down of FW pumps, the condensate and booster pumps will continuously pump water from condenser to the break thereafter by conservative assumption.

Event Description

- To adequately analyze the break events, all essential phenomena involved in the FW blowdown process need to be adequately simulated. Those phenomena include :
 - > critical flow at the break and the internal venturi,
 - \succ flashing of FW near the break,
 - ≻ run out and coast down of the FW pumps,
 - ➢ steam extraction to FW heaters and FWP turbines,
 - Isshing of saturated water initially stored inside the FW heater shell sides and drain tanks,
 - > energy release from saturated water and system metal to the FW, and
 - \succ cold water transportation from the main condenser to the break.

- All components of MS and FW systems are modeled and integrated by system piping to form a completed power conversion system.
- Detailed system design data is applied to develop the model for each component and associated piping.
- The simulated initial system conditions at rated state will be compared against associated parameters from Thermal Kit and/or Process Flow Diagram (PFD) of Lungmen plant.
- Totally 299 nodes and 277 junctions are involved in the entire BOP simulation scope.

- □ Total of 158 hydraulic volumes and 151 junctions are involved in modeling of the FW system.
- **The components of the FW system modeling include :**
 - ≻FW pumps (FWPs) and driving turbines;
 - ≻FW heaters;
 - ➤ condensate and booster pump;
 - ➢ main condenser; and
 - ≻system piping.

核子工程組12

Pump design curves at run out speed 5350 rpm are used to simulate the pump characteristics.

- Since each FWP is driven by a FWP turbine, the modeling of FWP turbine with a shaft to connect FWP is also included.
- The rotation speed of the whole FWP module will be determined by the angular momentum conservation applied on the shaft connecting associated turbine and pump.

$$\sum_{i} I_{i} \frac{d\omega}{dt} = \tau_{T} - \tau_{P} - f * \omega$$

Error Analysis of Initial Conditions of Feedwater System at Rated Condition

Pressure [MPa]	Rated V alue	Initial V alue	Error [%]
89001 (Main Condenser)	0.0059260	0.0059265	800.0
821 (HTR4 Outlet)	3.2603000	3.2518800	-0.258
651 (FWP Discharge)	8.1633000	8.1523100	-0.135
671 (HTR1 Outlet)	7.8143000	7.6884300	-1.611
Temperature [K]	Rated V alue	Initial Value	Error [%]
813 (HTR6 Inlet)	309.95	309.20	-0.242
824 (HTR3 Outlet)	423.85	421.81	-0.481
830 (HTR1 Outlet)	488.75	487.36	-0.284
Mass Flow Rate [kg/s]	Rated V alue	Initial V alue	Error [%]
706 (HTR6 Inlet)	2122.306	2121.700	-0.029
716 (HTR4 Inlet)	2122.306	2121.700	-0.029
771 (HTR1 Inlet)	2122.306	2121.700	-0.029
Pump Speed [rad/s]	Rated V alue	Initial Value	Error [%]
969 (TDFWP-A)	515.22	516.10	0.171

Error Analysis of Pressure Distribution

Modeling Description

- Modeling of Main Steam System-

- Total of 141 hydraulic volumes and 126 junctions are involved in modeling of the MS system.
- □ The components of the MS system modeling include
 - ➤ steam header;
 - ≻high pressure and low pressure turbines;
 - ► MSR and drain tanks; and
 - ≻steam extraction.

All components are connected by piping as design.

Modeling Description - Modeling of Main Steam System-

核子工程組18

Modeling Description

- Modeling of Main Steam System-

Error Analysis of Initial Condition of Main Steam System

essure [MPa]	Rated Value	Initial Value	Error [%]
1 (MSL Header)	6.7900000	6.8694200	1.170
1 (HPT Inlet)	6.5200000	6.5190700	-0.014
3 (HPT Outlet)	1.3100000	1.3097000	-0.023
3 (LPT Inlet)	1.2300000	1.2020900	-2.269
4 (LPT Outlet)	0.0076000	0.0076133	0.175
ass Flow Rate [kg/s]	Rated Value	Initial Value	Error [%]
0 (MSL Header Inlet)	530.5 77	530.560	-0.003
1 (HPT Inlet)	506.070	505.730	-0.067
103 (SPRT Inlet)	1677.145	1672.600	-0.271
101 (SPRT Outlet)	1462.336	1447.800	-0.994
8 (LPT Inlet)	1426.776	1412.300	-1.015
0 (LPT Outlet)	1157.997	1142.600	-1.330
901 (MFPT-A Inlet)	17.780	17.781	0.006
001 (MFPT-B Inlet)	17.780	17.781	0.006

Modeling Description - Modeling of Main Steam System-

核子工程組20

- Modeling of Main Steam System-

Error Analysis of Initial Condition of Steam Extraction

essure [MPa] (Turbine Side)	Rated Value	Initial Value	Error [%]
2 (HP Turbine 5th Stage)	2.370000	2.330480	-1.668
3 (HP Turbine Outlet)	1.320000	1.309700	-0.780
4 (LP Turbine 2nd Stage)	0.548900	0.549262	0.066
5 (LP Turbine 3rd Stage)	0.335700	0.335753	0.016
6 (LP Turbine 5th Stage)	0.126200	0.126830	0.499
7 (LP Turbine 6th Stage)	0.051920	0.052942	1.968
essure [MPa] (Heater Side)	Rated Value	Initial Value	Error [%]
1 (HTR6)	0.049330	0.049584	0.515
3 (HTR5)	0.119800	0.118039	-1.470
5 (HTR4)	0.318900	0.312848	-1.898
7 (HTR3)	0.521500	0.516583	-0.943
9 (HTR2)	1.260000	1.265900	0.468
1 (HTR1)	2.250000	2.198650	-2.282
ass Flow Rate [kg/s]	Rated Value	Initial Value	Error [%]
9 (MSL Header to RHTR2)	98.027	99.289	1.287
3 (HPT to RHTR1)	77.735	78.120	0.495
6 (HPT to HTR1)	119.329	121.290	1.643
9 (HPT to HTR2)	150.070	150.960	0.593
1 (LPT to HTR3)	33.977	34.024	0.138
4 (LPT to HTR4)	81.389	81.679	0.356
7 (LPT to HTR5)	59.962	59.886	-0.127
0 (LPT to HTR6)	93.451	94.128	0.724

核子工程組21

Modeling Description

- Modeling of the Feedwater Line Break-

- Two separated FW lines entering the reactor vessel are simulated.
- On each line the venturi is also modeled using junction component with reduced flow area.
- To simulate the internal choking, the Moody critical flow model is applied on the break junction as well as the venturi junction.

FLOW AREAS: MAIN FEEDWATER LINE = 0.24 m² RPV NOZZLE = 0.12 m² RESERS = 0.07 m² SPARGER OPEN AREA = 0.03 m²

Modeling Description - Modeling of the Feedwater Line Break-

Modeling Sensitivity Study

- To ensure proper or conservative modeling, sensitivity study of five important parameters are performed. Those parameters include
 - inertia of feedwater pumps

A range of pump inertia (100%, 75% and 50% of the design inertia of FWPT, 930.0 kg-m²) is studies.

Moody critical flow model

The quantitative effect of using Moody model is verified by comparison against the build-in best estimate choked-flow model

size of nodding right before the break

The node right before the break is subdivided by three different kinds of nodding size in term of L/D (0.34, 0.71 and 1.06).

discharge coefficient; and

As required by the Appendix K, studies of the effect of discharge coefficient ranged from 0.6 to 1.0 were performed.

➢ internal choking on Venturi.

If internal choking occurs on the Venturi, the break flow might be limited by the area of Venturi.

□ Initial Conditions

Parameter	Initial Value
Reactor Thermal Power [MW _t]	4005 (102 %)
Steam and Feedwater Flow [kg/s]	2164.8 (102 %)
Feedwater Temperature [°C]	216.9 (102 %)
Turbine Driven Feedwater Pump Speed [rpm] (Pump Rated Speed: 4920 rpm)	4957

核子工程組25

□ Plant Operations

- The FW pumps go to maximum speed and corresponding flow runs out (maximum controller demand) immediately upon event initiation;
- The FW pumps are continuously running along with the coast down of FW pump turbines;
- MSIV closure time for the inboard break is 5.5 seconds and 14.55 seconds for the outboard break. Information is derived from pressure and steam flow boundaries supported by GE;
- Extraction steam continues to enter the FW heater and the FW pump turbines until steam inventory is depleted or blocked by the non-return valves designed to protect main turbines;

□ Plant Operations

- ➢Non-safety systems and components are assumed to fail in ways that maximum the amount of water mass and energy blowdown;
- ≻Condensate pumps and condensate booster pumps continue operating and provide flow to the FW system;
- ➤Transfer of condensate storage tank inventory available to the condensate system is credited; and
- ≻FW flow to the vessel through the unbroken line continues intermittently through the event, depending on the FW line and RPV pressures.

Modeling Assumptions

- Homogeneous Moody model is applied to calculate blowdown flow rate;
- ➤The effects of critical flow at various valves, fittings and components are considered;
- Flow losses (piping friction, local losses, and elevation effects) is considered in determining the maximum break flow;
- ➤The pump curves of flow run out are used to model the FWPs;
- ➢Flashing of saturated water and the associated effect of flashing on steam supply are considered;

- ➤ The effect of stored heat from metal and saturated water stored in FW heater shell sides on the FW heating are considered;
- Calculated extraction steam and drain water to the FW system is multiplied by a factor of 1.05;
- Calculated steam flow entering into the FW pump turbines is multiplied by a factor of 1.05;
- The L/D of nodes right before the break is set to be 0.34 by sensitivity analysis; and
- The discharge coefficient is conservatively set to be 1.0 by sensitivity analysis.

Extraction Steam Flow from L. P. Turbine

Results

Steam Pressure before and after MSIV

Results

FW Flows of Both Intact and Broken Lines

Blowdown Flow Rate

核子工程組32

Results

Feewater Heater Shell Side Pressures

Results

Comparison with PSAR Analysis

Conclusions

- The blowdown of BOP system caused by the FW line break has been successfully analyzed by the Appendix K version of RELAP5-3D.
- □ The essential components of the BOP simulation scope include
 - ≻ steam header,
 - ➢ high pressure and low pressure turbines,
 - ≻ MSR,
 - > FWP turbines,
 - ➤ main condenser,
 - condensate and booster pumps,
 - \succ FW heaters of six stages,
 - steam extraction of seven stages,
 - ➤ turbine driven FW pumps.

Conclusions

□ Important phenomena involved can be properly simulated by RELAP5-3D. Those phenomena are

- \succ critical flow at the break and the internal venturi,
- ➢ flashing of FW near the break,
- ➢ run out and coast down of the FW pumps,
- steam extraction to FW heaters and FWP turbines,
- flashing of saturated water initially stored inside the FW heater shell sides and MSR drain tanks,
- > energy release from saturated water and system metal, and
- > cold water transportation from the main condenser to the break.
- The successful application of the RELAP5 for the FW blowdown analysis indicates that the advanced RELAP5 code can extent it's traditional reactor safety analysis to entire power conversion system simulation.

Conclusions

Through comparisons against the PSAR curves for the inboard break, it was observed that

- the blowdown flow rate are generally less than the constant value applied in PSAR in the first 120 seconds;
- After 120 seconds, the present analysis conservatively assumes continuous operation of the condensate and booster pumps;
- The accumulated blowdown inventory can be bounded by the PSAR only for the first 180 seconds;
- the blowdown enthalpy decreases more gradually as compared with the PSAR;
- It can be seen that accumulated blowdown energy from RELAP5-3D/K calculation was bounded by the PSAR only in the early 120 seconds;
- The revised blowdown flow and enthalpy using RELAP5-3D/K can provide a new and solid basis for the FSAR containment analysis of the Lungmen nuclear power plant.

Future Work Phase II Integral Blowdown Analysis

Nodding Diagram for RPV Blowdown

Future Work Engineering Simulator of LungMen ABWR

Hardware Configuration of Engineering Simulation

