

Idaho National Engineering and Environmental Laboratory

NGNP Neutronics & Thermal-Hydraulics Research & Development Plans

Presented by:

James R. Wolf, PhD

August 25, 2004

NGNP R&D Plan: Thermal - Hydraulics & Neutronics - Outline

- Introduction
 - The Process
 - Scenario Identification
 - PIRT
 - Validation Needs
- Work Planned for RELAP5

The R&D Process is based on...

- Identifying the most demanding scenarios for candidate plant design
- Isolating key phenomena in scenarios
- Determining whether analysis tools can be used to confidently analyze plant behavior in scenarios: Validation
- Performing R&D to upgrade analysis tools where needed

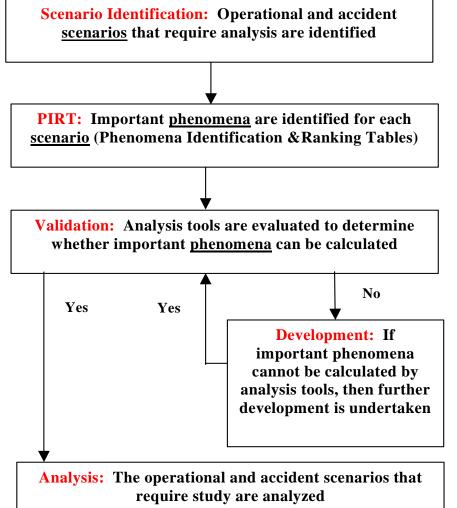
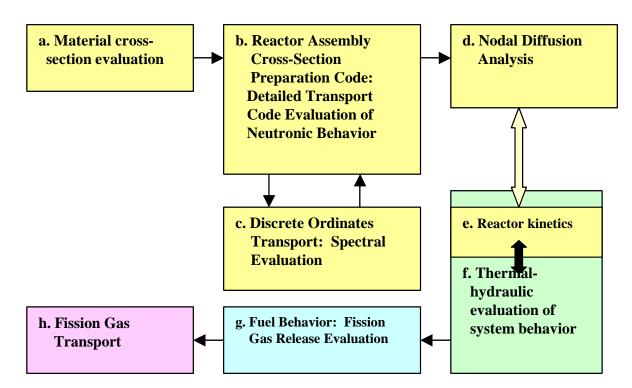



Fig. 1. Research & Development Process

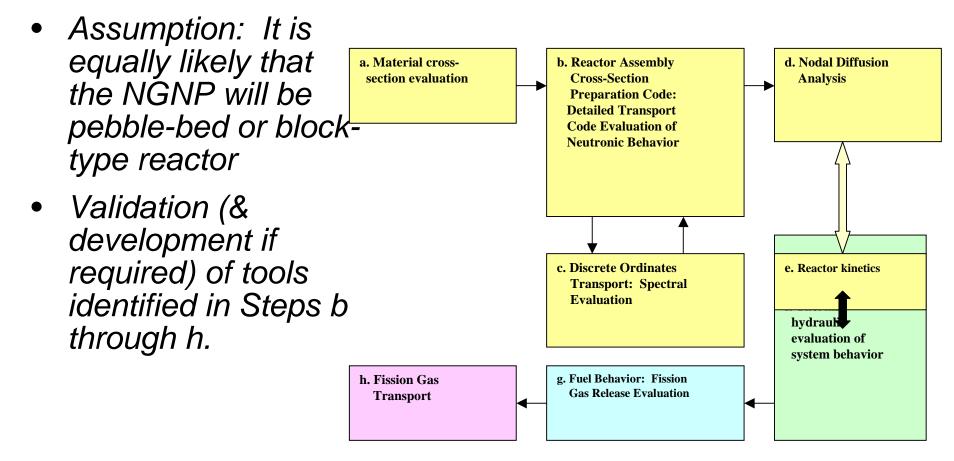
The calculation process...

- Consists of 8 steps and
- Requires adequate data e.g. crosssections to enable validation of analysis tools.
- Requires the analysis tools to have reasonable[†] agreement with data for key phenomena.

[†] Reasonable agreement: calculated value sometimes lies within data uncertainty band and shows same trends as data.

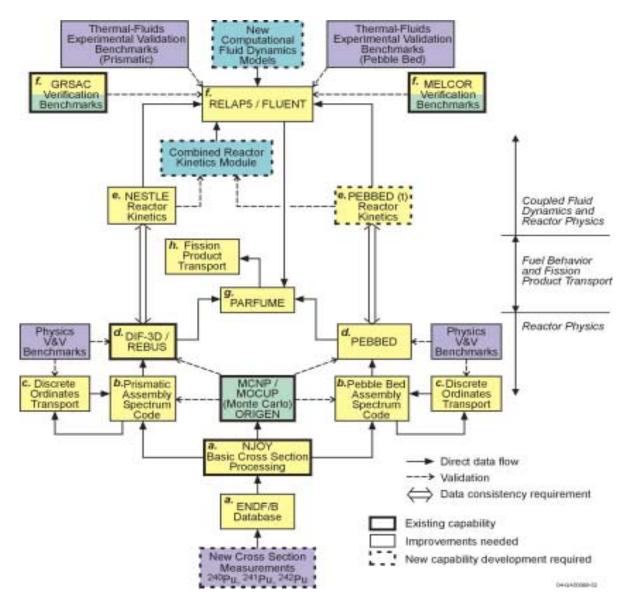
NGNP must be shown to be safe...

- In complete operational and accident envelopes:
 - Anticipated operation occurrences, e.g., accidental withdrawal of control rods or loss of main and shutdown loops
 - Design basis accidents
- By using analysis tools capable of calculating:
 - Fuel behavior, including migration of fuel kernel in fuel sphere,
 - Fuel power distribution
 - Thermal-hydraulic behavior—operational & accidents
 - Potential for air ingress, water ingress, and graphite oxidation.
 - Fission product migration as function of fuel failure



R&D Plans: Using a "First-Cut" PIRT

- Based on prioritization of scenarios and phenomena :
 - Identified by experienced gas-cooled system designers
 - Engineering judgment
- Aimed at requirements for performing reasonable calculations of plant behavior for:
 - Operational conditions (rated power)
 - Pressurized conduction cooldown transient scenario (PCCS)
 - Depressurized conduction cooldown transient scenario (DCCS) including possible air/water ingress


R&D Plan based on...

Including for example:

- Step b: COMBINE or DRAGON
- Step c: ATTILA
- Step d: DIF-3D
- Step f: RELAP & Fluent
- Step g: PARFUME

Portion of R&D Need Matrix...

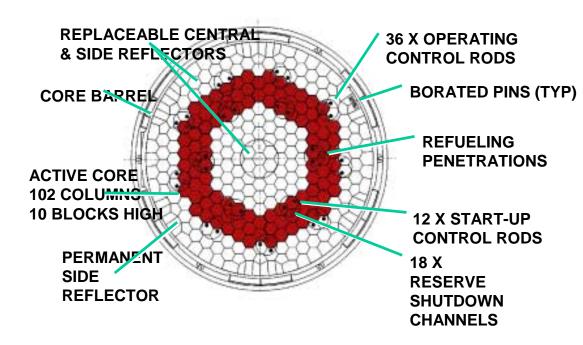
Region of System	Operational Conditions	Depressurized Conduction Cooldown	Pressurized Conduction Cooldown
Inlet Plenum			IP1: Validation of CFD mixing calculation during transient.
Core	 CO1: Nuclear data measurements to reduce calculational uncertainty. CO2: Modification of cross-section generation code to treat low-energy resonances with upscattering. CO3: Development of improved method for computing Dancoff factors. CO4: Characterization of hot channel temperatures and fluid behavior at operational conditions. CO5: Validation using integral experimental data. 	 CD1: Validation of systems analysis codes to demonstrate capability to predict thermal behavior. CD2: Validation of models that calculate fission product release from fuel. CD3: Validation and calculation of air ingress and potential water ingress behavior into reactor vessel and core region. 	CP1: Validation of systems analysis codes to demonstrate capability to predict thermal and hydraulic behavior.
Outlet Plenum	PO1: Validation of CFD mixing using mixed index refraction (MIR) facility data & data available in literature. Perform calculation of fluid behavior with validated code.	PD1: Validation of CFD mixing during operational transients and effect on turbine operational characteristics. Perform calculation of fluid behavior.	PP1: Validation of CFD mixing during operational transients and effect on turbine operational characteristics. Perform calculation of fluid behavior.
RCCS	RO1: Validation of natural convection characteristics in cavity at operational conditions.RO2: Characterization of natural convection characteristics in cavity at operational conditions.	RD1: Validation of heat transfer & convection cooling phenomena present in reactor cavity and via RCCS.	RP1: Validation of heat transfer & convection cooling phenomena present in reactor cavity and via RCCS.

Because a system-wide modeling capability is required for NGNP analysis...

- Modeling thermal, neutronic, and dynamic coupling of Core, Reactor Vessel, Balance-of-Plant, Shutdown Cooling System, and Reactor Cavity Cooling System is required for <u>design</u> and <u>safety</u> studies
- Several codes will provide the basis for these studies
 - RELAP5-3D/ATHENA
 - Fluent
 - GRSAC
- FY-05 system analysis R&D is focused on RELAP5-3D/ATHENA development and validation

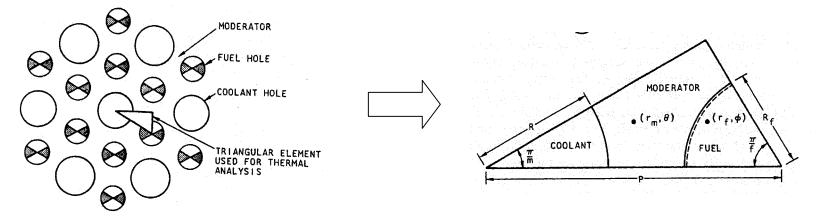
FY-05 Subtasks

- Assess heat transfer models using existing gas flow data
- Enable heat structures to conduct/radiate heat axially and radially
- Continue diffusion modeling for air ingress


Gas Flow Heat Transfer

- A range of heat transfer modes will occur during normal and accident conditions
 - Forced convection
 - Mixed convection
 - Downflow and upfLow
 - Strong gas property variations
- RELAP5-3D/ATHENA will be assessed using relevant, existing data
 - McEligot, Magee and Leppert [1965], Perkins and McEligot [1975], Reynolds [1968], Shumway [1969] and Vilemas and Poskas [1999]

INEEL


Core thermal conduction/radiation model for conduction cooldown modeling

- A heat structure models each graphite block
- Each heat structure conducts and radiates heat to its neighbors axially and radially
- A uniform block temperature is assumed

Operational and early time accident temperature distribution requires a detailed analysis

Symmetry within a graphite block defines a "primitive" that can be modeled to evaluate temperature distribution using a 3D heat conduction code (e.g. FIDAP, ABAQUS, Fluent)

Air ingress following LOCA requires a gas diffusion model

- Air ingress may lead to oxidation of the graphite blocks
- Development of a diffusion model was begun under I-NERI sponsorship in FY-04
- This subtask will complete the initial model and debug