

Resolution of Flow Direction Dependence of Critical Flow Models in RELAP5-3D

Frank Buschman

Bettis Atomic Power Laboratory

Overview

- Definition of faces and flow directions
- Flow direction dependence of Henry-Fauske critical flow model implementation
 - Identification
 - Resolution
 - Verification
- Changes to Flow Quality calculation

Definition of Faces and Directions

- Each volume in RELAP5-3D has 6 faces
 - Primary flow is in the x-direction
 - Gravity can be assigned to any direction

- Positive flow is defined as:
 - Face 1 \rightarrow Face 2 in x-direction
 - Face 3 \rightarrow Face 4 in y-direction
 - Face 5 \rightarrow Face 6 in z-direction

Definition of Faces and Directions

- Positive flow direction for junctions is user defined as:
 - <u>From</u> volume \rightarrow <u>To</u> volume
- Pipe internal junctions
 - <u>From</u> volume = lower numbered volume
 - <u>To</u> volume = higher numbered volume
- User defined junctions (single junctions, valves, etc.)
 - User inputs <u>From</u> and <u>To</u> volumes

Identification of the Problem

- User problem reported
 - Choked flow rate given by Henry-Fauske under-predicted by up to 30%
 - Incorrect flow rates obtained when flow through the volume upstream of the break was negative (negative velocities)
- Further investigation showed incorrect choked flow rates for:
 - Negative flow through upstream volume
 - Negative flow through the choked junction

Steady-State Choked Flow

Default

Henry-Fauske

Steady-State Choked Flow

Henry-Fauske

Default

IRUG October 2012

Slide 7

Transient Choked Flow

Default

Henry-Fauske

Transient Choked Flow

Henry-Fauske

Default

IRUG October 2012

Cause of flow direction dependence

- Assumption inherent in the implementation that the model would only be applied with flow in the positive flow direction
- Results in incorrectly calculated stagnation pressure at the choked junction
- Appendix K choked flow model is similarly impacted

Henry-Fauske Choked Flow Model

- Why was this not previously observed?
 - Models developed to test choked flow are generally one dimensional
 - Marviken
 - Edwards-O'brien
 - Models are purposefully developed with flow in the positive direction
- Where is it important?
 - Double ended breaks
 - SG tube rupture

Changes to RELAP5-3D

- Five separate issues have been addressed
 - Three are related to the calculation of stagnation pressure at the break
 - 1. Momentum head term in the pressure loss formulation contained incorrectly applied sign adjusted velocities

$$P_{loss} = 0.5 * \omega_{v,sign} (\alpha_{f,j} \rho_{f,j} | \mathbf{v}_f | \mathbf{v}_f + \alpha_{g,j} \rho_{g,j} | \mathbf{v}_g | \mathbf{v}_g)$$
$$\omega_{v,sign} = SIGN(1.0, \mathbf{v}_{f,j})$$

Corrected by taking the absolute value of the net momentum head

$$P_{loss} = 0.5 \left| \alpha_{f,j} \rho_{f,j} \right| \mathbf{v}_{f} \left| \mathbf{v}_{f} + \alpha_{g,j} \rho_{g,j} \left| \mathbf{v}_{g} \right| \mathbf{v}_{g} \right|$$

Changes to RELAP5-3D

- 2. Pressure loss due to wall friction used an incomplete sign correction
 - Corrected by adding an additional sign correction based on location of the choked junction compared to the orientation of the velocity

$$P_{loss} = P_{loss} - \omega_{Vol,sign} \Delta x \left(F_{wall,f} \mathbf{v}_f + F_{wall,g} \mathbf{v}_g \right)$$

- 3. Pressure loss due to gravity contained an incorrectly applied sign correction
 - Corrected the sign term to remove dependence on junction velocity

$$P_{loss} = P_{loss} - \omega_{Vol,sign} g_c \Delta h \left(\alpha_{f,j} \rho_{f,j} + \alpha_{g,j} \rho_{g,j} \right)$$

Changes to RELAP5-3D

- Two are related to change of critical flow rate with time
 - 4. Derivative of velocity with respect to pressure (used to calculate implicit velocity) contained an unnecessary sign term
 - Corrected by removing the sign term

- 5. Selection of the weighting factor in the time-smoothing of velocity was done using velocity
 - Corrected by using absolute value of velocity

Verification of Changes

- Four verification problem sets developed
 - One steady-state
 - Three transient
 - Flow in all directions
 - Through junction that is experiencing critical flow
 - In upstream volume
 - Choked flow at all Faces
 - Both semi and nearly-implicit
 - Test all choking options
 - Henry-Fauske
 - Default (Ransom-Trapp)
 - No choking

Choked Flow Verification

BELTIS

- Depressurization problem
 - Transient blowdown through a pipe
 - Various pipe and valve orientations
 - Flow always left-to-right (as shown)

Depressurization Results

Choked Flow Verification

- Steady-state problem
 - Steady-state choked flow through a single volume
 - Same volume and junction orientations as depressure problem (only first orientation shown)

Steady-State Results

Choked Flow Verification

- Side-top-bottom problem
 - Transient blowdown through a pipe
 - Same as depressure problem except:
 - Choked junction located at face 3, 4, 5, or 6
 - Choked junction oriented facing into and out of the pipe

Side-Top-Bottom Results

• Changing break orientation with break located at each of the six faces

Side-Top-Bottom Results

Changing pipe orientation with break oriented out of the pipe

Changing pipe orientation with break oriented into the pipe

Choked Flow Verification

- Flow-past-break
 - Transient blowdown
 - Flow through a pipe
 - Various pipe and valve orientations
 - Break located in the middle of the pipe
 - Reduced break area compared to pipe area
 - Break is located on the **downstream** face of the **third** pipe volume
 - Flow out of break is in the **same** direction as the flow in the pipe

Flow-Past-Break Results

Choked Flow Verification

- Flow-past-revbreak
 - Transient blowdown through a pipe
 - Various pipe and valve orientations (only one is shown)
 - Break located in the middle of the pipe
 - Reduced break area compared to pipe area
 - Break is located on the **upstream** face of the **fourth** pipe volume
 - Flow out of break is in the **opposite** direction as the flow in the pipe

Flow-Past-RevBreak Results

Flowing Quality

Ratio of gas field flow rate to total flow rate

$$x_{flow} = \frac{\mathcal{M}_g}{\overline{\mathcal{M}_g} + \overline{\mathcal{M}_l}}$$

• Used to calculate the equilibrium quality

$$x_{e} = \frac{\left[x_{flow}h_{g} + \left(1 - x_{flow}\right)h_{f}\right] - h_{f,sat}}{h_{g,sat} - h_{f,sat}}$$

- Fluid enthalpies are "exit" conditions
 - Change in fluid energy calculated over the length of volume
 - An attempt is made to determine flow direction so that matching "exit" flows are used

Flowing Quality

- Identification of "Exit" Faces of a volume
 - Original Code
 - Identify sign of largest gas mass flux
 - If positive: Exit Faces are 2, 4, and 6
 - If negative: Exit Faces are 1, 3, and 5
 - Does not take into account actual flow conditions in each direction
 - Produces asymmetric results for symmetric problem
 - Identified during investigation of Henry-Fauske error
 - Break attached to Face 3 provided different results than break attached to Face 4 with choking turned off

Flowing Quality

- Identification of "Exit" Faces of a volume
 - Modified RELAP5-3D
 - Examine each Face independently
 - If gas is flowing out of Face it is an Exit Face
 - Only the gas flow rate is examined to allow definition of an Exit Face in counter-current flow situations
 - Provides a more realistic physical representation of flow conditions

Calculating Flowing Quality

- Once Exit Faces have been identified
 - Calculated average exit mass flow rates

• Gas

$$\overline{\mathcal{M}_{g}} = \left[\sum_{N=1}^{N_{exit}} \mathcal{M}_{g,N}^{2}\right]^{\frac{1}{2}}$$
• Liquid

$$\overline{\mathcal{M}_{l}} = \left[\sum_{N=1}^{N_{exit}} \mathcal{M}_{l,N}^{2}\right]^{\frac{1}{2}}$$

$$x_{flow} = \frac{\overline{\mathcal{M}_{g}}}{\overline{\mathcal{M}_{g}} + \overline{\mathcal{M}_{l}}}$$

Calculating Flowing Quality

1

- If sum of gas and liquid flow rates is zero
 - Original
 - Use static quality
 - Modified
 - Use volume velocities

$$\overline{\mathcal{M}_{g}} = \alpha_{g} \rho_{g} \left[\left(U_{g,x} A_{x} \right)^{2} + \left(U_{g,y} A_{y} \right)^{2} + \left(U_{g,z} A_{z} \right)^{2} \right]^{\frac{1}{2}}$$
$$\overline{\mathcal{M}_{l}} = \alpha_{l} \rho_{l} \left[\left(U_{l,x} A_{x} \right)^{2} + \left(U_{l,y} A_{y} \right)^{2} + \left(U_{l,z} A_{z} \right)^{2} \right]^{\frac{1}{2}}$$

• If sum is still zero use static quality

$$x_{flow} = \frac{\overline{\mathcal{M}_g}}{\overline{\mathcal{M}_g} + \overline{\mathcal{M}_l}}$$

Conclusions

- Modified Henry-Fauske critical flow model implementation
 - Removed flow direction dependence
- Developed comprehensive set of quantitative verification problems
- Developed and implemented a symmetric definition of Exit Face for use in the calculation of Flowing Quality