RAMATOME ANP

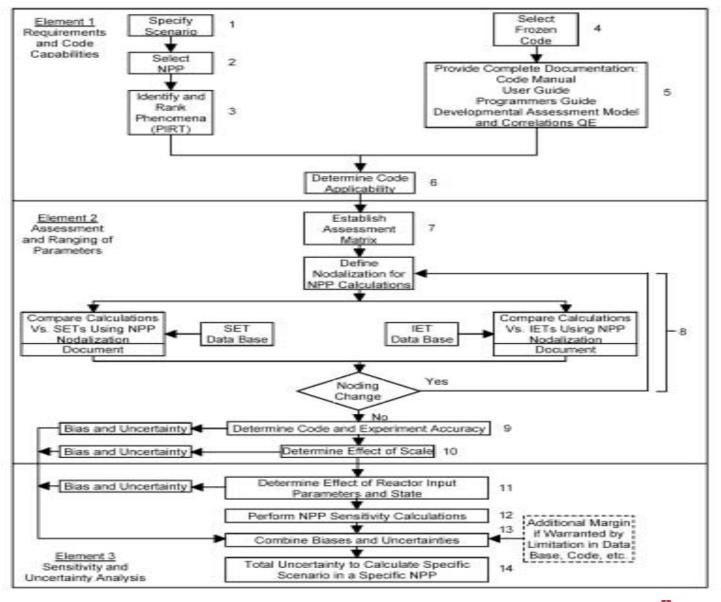
Realistic Large Break LOCA Methodology

Presenter: K. E. Carlson

Realistic Large Break LOCA Methodology

> Outline

- Background
- Methodology Development Overview
- CSAU Compliance
 - Element 1 Requirements and Code Capabilities
 - Element 2 Assessment and Ranging of Parameters
 - Element 3 Sensitivity and Uncertainty Analysis
- Sample Problem Results



Background

> Technical Program Group on Best-Estimate LOCA - mid-1980s

- End of 2D/3D Program
- Development of NUREG-1230 Compendium of ECCS Research
- NRC commissions TPG to develop a paradigm for performing Best-Estimate LOCA evaluations
 - TPG includes members from the NRC, national labs and academia no one from industry
 - TPG produces the CSAU methodology documented in NUREG-5249
- More information at <u>www.nuclearsafetyhistory.com</u>
- > Regulatory Guide 1-157 states that there is no regulatory requirement to follow any particular methodology; yet, acknowledges that the CSAU methodology is acceptable

Code Scaling, Applicability, and Uncertainty

FRAMATOME ANP

CSAU Steps 1-6

> Code Scaling, Applicability, and Uncertainty (CSAU)

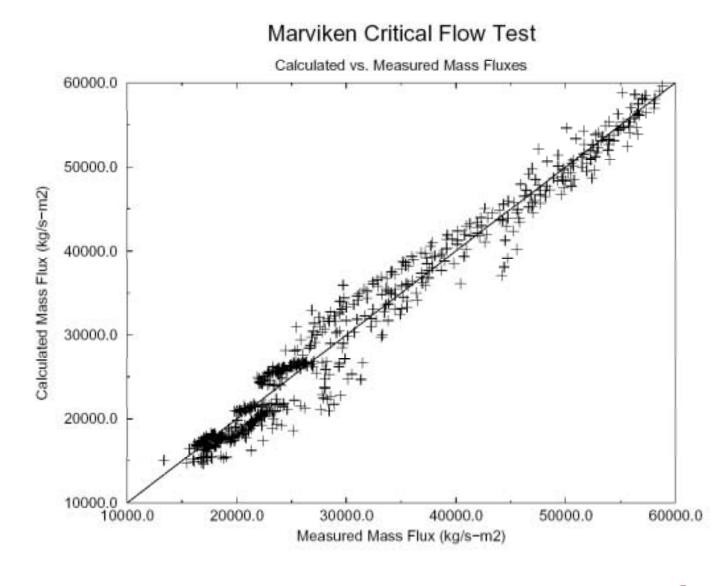
- Methodology is for LBLOCA...or W 3- and 4-loop plants and CE 2x4 plants
- Identify Important LBLOCA Phenomena documented in PIRT
- Computer Codes
 - RODEX3A Fuel Rod Code for UO2, COPERNIC for MOX
 - S-RELAP5 System Analysis Code
 - Includes RODEX3A and COPERNIC code models for consistency
 - Includes containment analysis models from the ICECON code
 - Codes demonstrated applicable to fuel designs, plant types and LBLOCA transient
- Codes and Methodology documented
 - Documented with methodology description, S-RELAP5 Models & Correlations, S-RELAP5 V&V, S-RELAP5 Programmers Guide, RLBLOCA guidelines for model development and analysis
- Code Models and Correlations critiqued for applicability to important PIRT phenomena.

Step 7 - Define Assessment Matrix

> Code Scaling, Applicability, and Uncertainty (CSAU)

- Define Assessment Matrix
 - Selected to address
 - Important LOCA phenomena defined in the PIRT
 - Nodalization validation
 - Code/model scaling
 - Verification of no important compensating effects
 - Need for supporting a broad range-of-applicability
 - Final assessment matrix included

15 SET facilities and 130 tests evaluated2 IET facilities and 6 tests evaluated

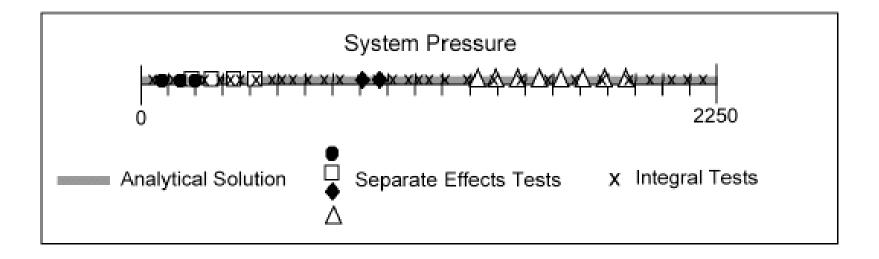

Step 8 - Nodalization

> Code Scaling, Applicability, and Uncertainty (CSAU)

- Nodalization
 - Selected to
 - support NPP design characteristics
 - preserve dominant phenomena
 - minimize code uncertainty
 - Significant nodalization changes
 - 2D downcomer
 - six axial nodes
 - 3/6/4 asmuthal nodes for W3/W4/CE2x4 plants, respectively
 - 2D core
 - approximately 6 inch axial nodes
 - four radial rings
 - 2D upper plenum
 - 3 axial nodes
 - 3 radial rings

> Code Scaling, Applicability, and Uncertainty (CSAU)

- Code and Experimental Accuracy
 - All SET and IET modeled and evaluated
 - Results of SET evaluations used to develop uncertainties and distributions for important PIRT phenomena
 - Primary use of IET was to demonstrate the acceptability of the code biases developed from the SET
 - Define range of applicability of important models and correlations
- Statistical Description Uncertainty is described by
 - Code bias and uncertainty developed for 11 important PIRT phenomena Mean or code bias
 - Probability distribution function
 - Standard deviation or range of uncertainty
- Pedigree of statistics depends on sufficient density and breadth of data within the range-of-applicability



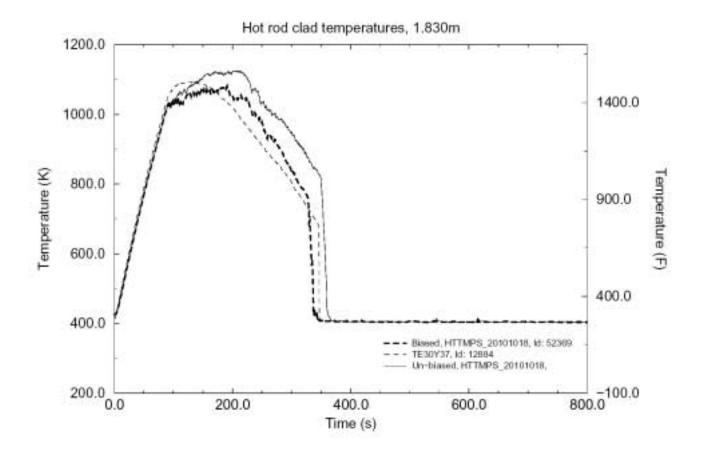
FRAMATOME ANP

> Range-of-applicability:

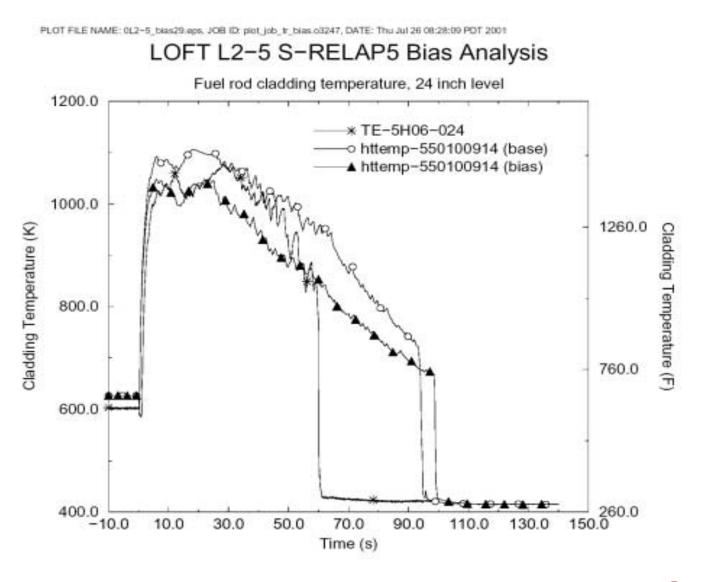
- "Range-of-Applicability" is subjective, requires technical basis
- Framatome method incorporates
 - Analytical models and correlations
 - Separate-effects assessment
 - Uncertainty analysis
- Validation using integral-effect assessment
- NRC focused only on the "Range-of-Applicability" of Heat transfer correlations (discussed in RAI 2)

> PIRT Phenomena Treated Statistically

- Core Post-CHF Heat Transfer (Film Boiling)
- Stored Energy
- Oxidation
- Decay Heat
- Burnup/Power Shapes (Time-In-Cycle)
- Break Flow (Break Size and Flow Split)
- Containment Pressure
- Cold Leg Condensation
- Critical Heat Flux
- T(min)
- Steam Binding
- Reactor Vessel Hot Walls


S-RELAP5 Accuracy Summary

PIRT Parameter	Bias	σ	Min or -2σ	Max or +2 σ
Stored energy (centerline	###	###	###	###
temperature)				
Metal-water reaction constant	1.0	0.182	0.636	1.364
Metal-water reaction exponent	1.0	0.0134	0.9732	1.0268
Decay heat uncertainty	1.0	0.003	0.94	1.06
Biasi CHF,	###	0.0	###	###
Film Boiling HTC,	###	special	###	N/A
Dispersed Film Boiling,	###	special	###	N/A
Tmin,	###	###	###	###
Break Discharge Coefficients,	###	###	###	###
Condensation Interphase HTC,	###	uniform	###	###
Steam Gene rator Inlet Interphase	###	0.0	###	###
Friction				
Hot wall (CHF multiplier)	###	binary	###	###
Containment pressure (volume)	###	uniform	min free	max free
			volume	volume


> Statistical Validation of Step 9 results

- A subset of CCTF, LOFT, and Semiscale assessments rerun applying code bias
- Results generally showed improved PCT code/data agreement

Example - CCTF

Example - LOFT

FRAMATOME ANP

> RELAP5/3D Users Seminar - West Yellowstone, Mt, 2003

Step 10 - Code Scaling

> Scaling Issue deemphasized largely by arguing

- Heat transfer tests performed on full-scale fuel assemblies
- Primary hydraulic phenomena assessed using full-scale UPTF assessment

Step 11 - Reactor Input Parameters

- > Analysis must address plant specific variations in operating and process parameters including Technical Specification limits
- For important plant parameters plant data and Tech Specs are used to develop uncertainty distributions
- Sample plant operating and process parameter list
 - Core power distributions total power, $F_{\Delta H}$, F_q , axial shape
 - Reactor coolant system loop flow rates and core inlet temperature
 - Upper head temperature
 - Pressurizer pressure and level
 - Accumulator pressure, volume, and temperature
 - Containment free volume, temperature, fan coolers, and sprays
 - Steam generator feedwater temperature
 - Offsite power availability
 - Diesel start time

Sampled Parameters Summary

PIRT Parameters	Plant Parameters
Heat Transfer	Core Power (%)
Void Distribution	Pressurizer Pressure (psig)
Axial Power Distribution	Pressurizer Level (%)
Entrainment	Accumulator Volume (ft ³)
Spacer Effects	Accumulator Pressure (psig)
Break Flow	Containment/AccumulatorTemperature (°F)
Cold Leg Condensation	Containment Volume (x10 ⁶ ft ³)
Interfacial Heat Transfer	Initial Flow Rate (MIbm/hr)
Upper Tie Plate CCFL	Initial Operating Temperature(°F)
Core Flow Distribution (multidimensional effects)	RWST Temperature (°F)
ECCS Bypass	Offsite Power Availability
Steam Binding	Diesel Start (s)
Accumulator Nitrogen Discharge	

Step 12-14 Convolution of Uncertainties

> Objective

- Defined in methodology as 95% confidence and 95% coverage
- > Methods
 - Parametric response surface described & demonstrated in NUREG-5249
 - Nonparametric Monte Carlo
- Identify 95/95 from largest PCT in the set of calculations
 - Report Total Oxidation from this case
 - Report Maximum Oxidation from this case
- Identify 50/50 from median PCT in the set of calculations to quantify total uncertainty

Nonparametric Statistics

- > Does not use a response surface
- > Relies on the execution of the code to perform a Monte Carlo analysis
- > A defined number of cases are run with the code to determine the 95/95 condition
 - 59 cases: highest value calculated is the 95/95
 - 93 cases: second highest value calculated is the 95/95
 - 124 cases: third highest value calculated is the 95/95
 - etc.
- > Each case is defined by randomly selecting a value for each PIRT phenomena and plant parameter being treated statistically

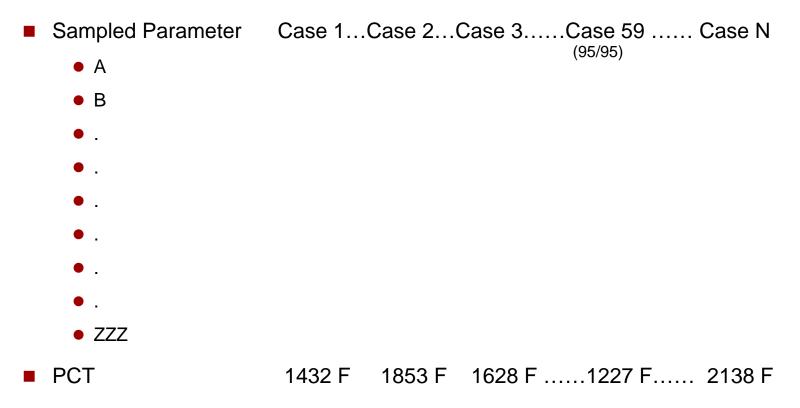
Ordered Statistics

> Basic Theory

Derived from fundamental Bernoulli Trials (combinatorial analysis)

Assumption of "ordered statistic" provides final form:

$$P[F(x_k) > \beta] = \frac{n!}{(k-1)! \cdot (n-k)!} \cdot \int_{\beta}^{1} \xi^{k-1} (1-\xi)^{n-k} d\xi$$


For the case in which k=n, that is the largest value of all of the samples is used, this relationship reduces to:

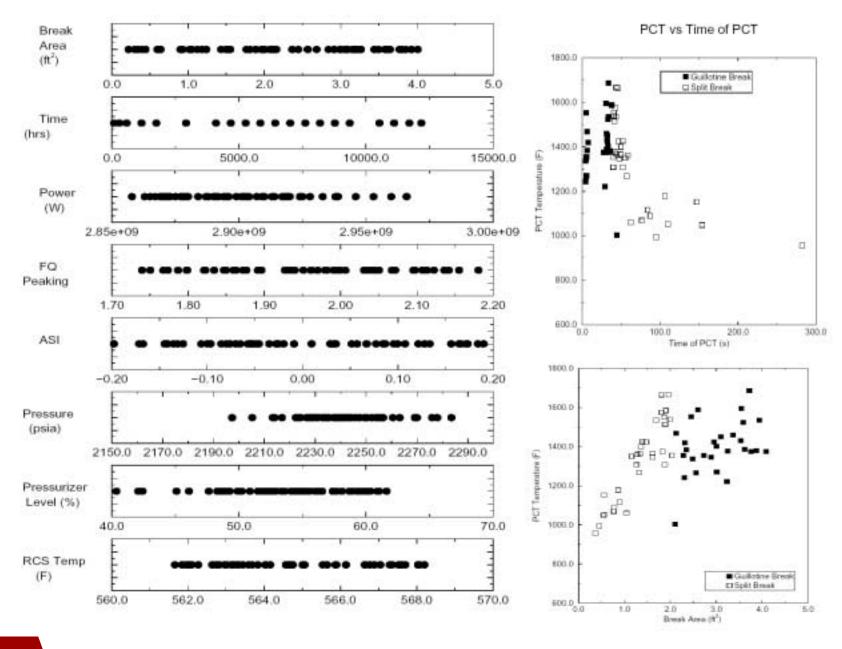
$$\gamma = 1 - \beta^n$$

Define confidence and probability, solve for *n*.

Perform Simulations

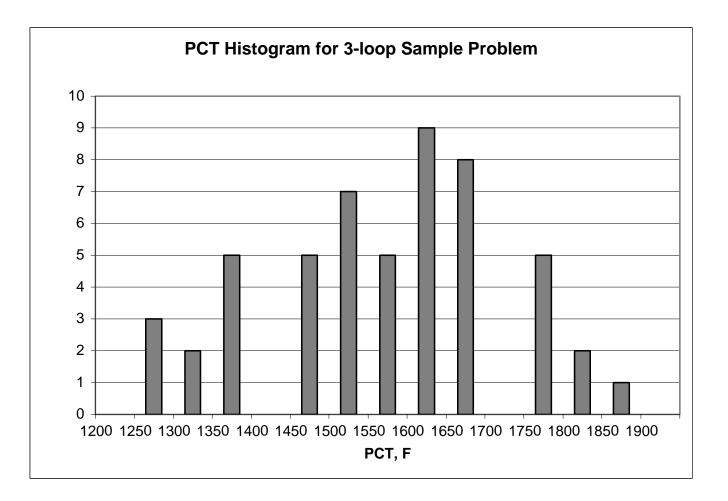
> Define cases to be run

Methodology Demonstration


- > Methodology Application Process
 - Develop base input decks for RODEX3A (or COPERNIC) and S-RELAP5
 - S-RELAP5 input includes input for ICECON containment model
 - Task is automated using plant-specific databases
 - Generate time-in-cycle neutronics input data
 - Generate plant specific parameter distributions
 - Generate modified inputs for a minimum of 59 cases
 - Perform calculations for 59 cases
 - Run RODEX3A or COPERNIC to generate initial fuel conditions
 - Run S-RELAP5 steady state
 - Run S-RELAP5 transient calculation
 - Analyze results of 59 cases to determine 95/95 peak clad temperature, peak nodal oxidation, and total core oxidation

Methodology Demonstration

> W 4-loop Sample Problem


Conditions

- Power = 3250 MWt
- $F_{\Delta H} = 1.80$
- F_q = 2.62
- 95/95 Results
 - PCT = 1686 F (< 2200 F)
 - Maximum Nodal Oxidation = 1.1% (< 17%)
 - Maximum Core Oxidation = 0.02% (< 1 %)

> RELAP5/3D Users Seminar - West Yellowstone, Mt, 2003

Histogram

FRAMATOME ANP

Methodology Development History

> NRC Review Schedule	
 Original Development 	1989-1993
Revision Development	01/98-08/01
Topical Report Submitted	08/01
Presentation to NRC	10/01
 First Presentation to ACRS Subcommittee 	01/02
 NRC Issues Formal RAIs (139 total) 	04/02 - 8/02
Framatome Responds to RAIs	05/02 - 10/02
Draft Safety Evaluation Report by NRC	10/02
Final Presentation to ACRS Subcommittee	11/02
 ACRS Full Committee Meeting 	12/02
NRC Approval	04/09/03

