
Idaho National Engineering and Environmental Laboratory

Programming
Improvements in

RELAP5-3D
George L. Mesina
Idaho National Engineering & Environmental Laboratory
Idaho Falls, Idaho 83415

2003 RELAP5 International User’s Seminar
August 27-29, 2003

West Yellowstone, MT

Idaho National Engineering and Environmental Laboratory

Outline

• Fortran 90

• OpenMP Parallel

• Bitpacking Conversion

Idaho National Engineering and Environmental Laboratory

Reasons for Fortran 90 Conversion
• Code modernization (keep up with the compilers)

– Vendors supply only FORTRAN 90 and 95
– FORTRAN 2000 standard is nearing completion

• Reduce maintenance & development cost
– Readability
– Easier to modify, fewer errors
– Maintainability (bug fixes, shelf-life of code, etc.)

• Better language features
– allocate, modules, derived types, etc.

Idaho National Engineering and Environmental Laboratory

Fortran 90 Conversion Overview
• Long-term project with multiple tasks

– Current tasks: OpenMP parallel, bitpacking
– Upcoming Tasks: Elimination of FA-array, I/O Changes,

Internal methods changes (SCNREQ, RENODE, etc.)
• More than 100,000 lines of codes will change

– Some will change multiple times during several tasks
– Much of the work must be automated

• Reliability: The goal is to introduce no errors as a
result of the conversion.

Idaho National Engineering and Environmental Laboratory

Reasons for OpenMP Parallel Task

• RELAP5-3D uses direct calls to the KAI parallel
subroutine library to implement parallelism.

• This is unviable because KAI was bought out; its
software support will cease.

• Industry standard for parallelism is OpenMP.
– With OpenMP, the code will parallelize with modern Fortran

compilers on most O/S.
• Reduced cost for maintenance and development

over KAI library calls.
– OpenMP is easier to read.
– OpenMP coding simpler.
– There will be fewer code errors.

Idaho National Engineering and Environmental Laboratory

Description of “Parallel” Task
• RELAP5-3D uses calls to the KAI parallel

subroutine library to implement parallel.
• Convert calls of KAI subroutines to OpenMP

directives.
• Convert style of parallelism from “one fork” to

“natural parallelism.”
• Parallelize 3D hydro subprograms with openMP.
• Test carefully.

Idaho National Engineering and Environmental Laboratory

Starting Status

• RELAP5-3D partially converted to OpenMP.
• Subsequent code development impaired

parallelism.
– Some OpenMP loops became non-parallel by introduction of

non-parallel code.
– Some OpenMP directives became incorrect.

• Parallel errors occurred in some problems.
– Deadlocks
– Random errors

• Calculations differed when number of processors
was increased for some problems.

Idaho National Engineering and Environmental Laboratory

Parallel Task Plan
1. Stabilize RELAP5-3D for standard test

problems.
– Eliminate code aborts and freezes.
– Fix random errors.
– Get serial calculations to agree exactly w/ those from one,

two, and four processors.
2. Complete parallelization of code.
3. Improve parallel speed-up.

Idaho National Engineering and Environmental Laboratory

Parallel Task Plan
• Write a program to place OpenMP directives

before every loop.
• Hand process each subroutine to eliminate

directives for non-parallelizable loops.
• Use of program:

– Replace incorrect directives.
– Add OpenMP to subroutines not previously

parallelized.
• Carefully Test RELAP5-3D performance.

Idaho National Engineering and Environmental Laboratory

Parallel Task Status

• Converter program written.
• Over 80 subroutines converted or reprocessed.

– Only neutron kinetics subroutines remain unfinished.
• Output compared for 100 standard test cases.

– Same to last decimal place printed for:
• serial, 2 threads, and 4 threads.

• No parallel errors remain.

Idaho National Engineering and Environmental Laboratory

Bitpacking Background
• Introduced to save memory.

– A logical value or flag with limited settings does not need an
entire 4- or 8-byte word.

– Compress many of these into selected bits within one word.
• Bits are set and retrieved via bit-oriented intrinsic

functions.
– Originally the intrinsic functions were machine dependent.
– Fortran 90 provides an expanded library of bit-functions.

• Reading and coding bit operations is difficult.
– A constant source of errors.

Idaho National Engineering and Environmental Laboratory

Bitpacking Background
• Layout of bits in an 8-byte word

– Bit positions are numbered from the right starting at 0.
– The value of each bit is either 0 or 1.

• The value of the integer represented by
the bits
– Let bi be the value of the bit in position i.

63 62 61 2 1 0

 .
1-n
0i

2ib m i
�
=

=

Idaho National Engineering and Environmental Laboratory

Bitpacking Operations
• All bitpacking operations previously done with

compositions of these 6 operators.
– IAND, IOR, XOR, NOT, ISHFT, ISHFTC
– First three refer to the numerical expansion, m, rather than the

bits, i.
• The numerical expansion, m, of the bits is often a

large number.
– To understand the operation, must determine the bits, i, it

represents.
• Most bitpacking operations require combinations

of these functions and numbers.
– This causes difficulty in reading and developing the code.

Idaho National Engineering and Environmental Laboratory

Fortran 90 Bitpacking Task
• Purpose of Bitpacking Conversion is to replace

complex constructs with simpler ones.
– Use new bit intrinsic functions in FORTRAN 90.
– Create new bit functions in a module.

• New Fortran 90 functions refer to bit locations, i,
rather than the numerical equivalent, m.
– IBSET(A,B) sets bit B in variable A to 1.
– IBCLR(A,B) clears bit B in variable A to 0.
– BTEST(A, B) returns true is bit B in A is 1, false otherwise.
– IBITS(A, B, C) extracts a byte of length C from A starting in

position B. That is bits B through B+C-1.

Idaho National Engineering and Environmental Laboratory

Compare Old & New Bitpacking

• Fortran 90 functions are simpler and easier to
understand.

• IBYTECOPY is a new module bit function.
– There are 4 others.

Fortran 90 & Module FctnsPrevious

IBYTECOPY(FLOMAP(IX),6,0, IMAP(i),18)IOR(IAND(IMAP(i),NOT(ISHFT(63,
18))), ISHFT(FLOMAP(IX),18))

IBITS(JC(JX), 19, 2)ISHFT(IAND(JC(JX),1572864),-19)))

IBITS(VAR, 3, 7)IAND(ISHFT(VAR,-3), 127)

BTEST(VAR, 18)IAND(VAR, not(262144)) .NE. 0

VAR = IBSET(VAR, 14)VAR = IOR(VAR, 16384)

Idaho National Engineering and Environmental Laboratory

Fortran 90 Bitpacking Task
• Method of conversion

– Identify and categorize bitpacking constructs.
– Write program to automate conversion of most constructs.
– Hand convert only those constructs with few instances or

high complexity.
– Carefully test each significant conversion (over 50).

• Testing
– Over 100 standard test cases run with & without conversion.
– Output compared character by character.
– Accept conversion only if NO “non-time” differences found.

Idaho National Engineering and Environmental Laboratory

Bitpacking Status
• New Fortran 90 module of bitpacking functions

written and in use.
• All programmable bitpacking finished.

– Over 3800 statements converted.
• No differences due to conversion in output.

– Checked to last decimal place printed.
• Task complete, except for final report.

