

Improvements to the RELAP5 Turbine Model

C. B. Davis, INEEL W. L. Weaver, INEEL

2003 IRUG Meeting, Aug 27-29, 2003

Outline

- Background
- Improvements to turbine model
- Test Results
- Summary

Background

- Energy equation for turbine volume did not include dissipation due to non-ideal turbine – cannot get correct enthalpy distribution through a series of turbine components
- Turbine momentum equation used normal velocity divergence term
- Turbine model requires each turbine component to be proceeded by another turbine component – this requires a "dummy" turbine upstream of first active turbine

Background (cont.)

- Turbine components must be numbered consecutively
- Second turbine junction functions as a steam extraction junction –moisture separator option desired
- User specified variable turbine efficiency, frictional torque, and moment of inertia desired

Improvements to Turbine Model

- Energy equation modified to include dissipation in turbine
- Momentum equation for turbine inlet junction changed from central difference to backward difference
- Numbering restriction removed this removed requirement for "dummy" turbine upstream of active turbine

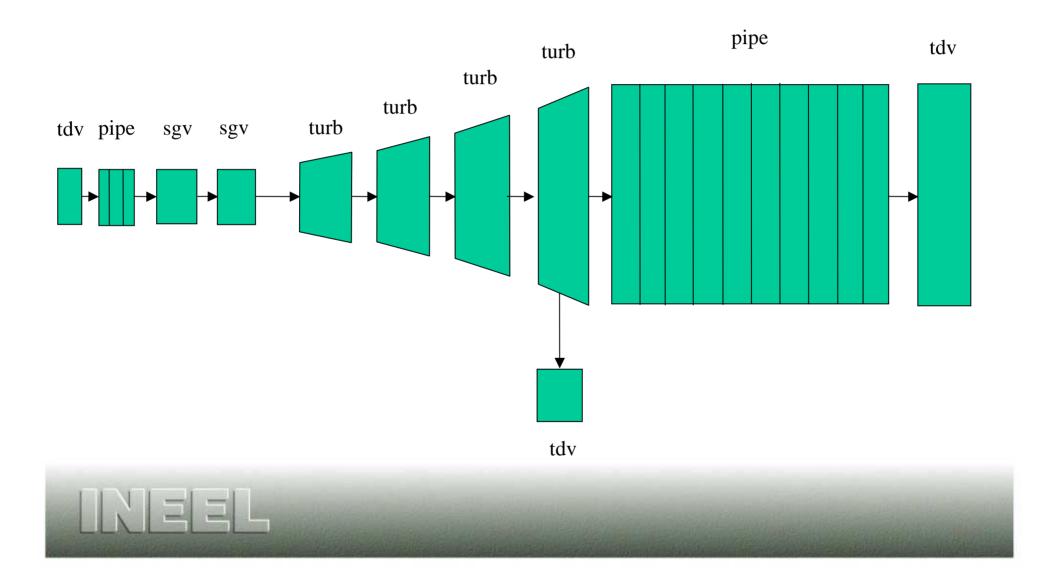
Improvements to turbine model (cont.)

- Removal of numbering restriction adds a geometric restriction volume upstream or downstream of a turbine component must be singly connected in the main flow direction, i.e., only one inlet and one outlet junction on this volume – automatically satisfied if turbine component preceded by or followed by another turbine component
- Moisture separator option added to turbine component

 optional separator efficiency added to turbine input
 old decks run as before, modified code assumes second junction is steam extraction junction

Improvements to turbine model (cont.)

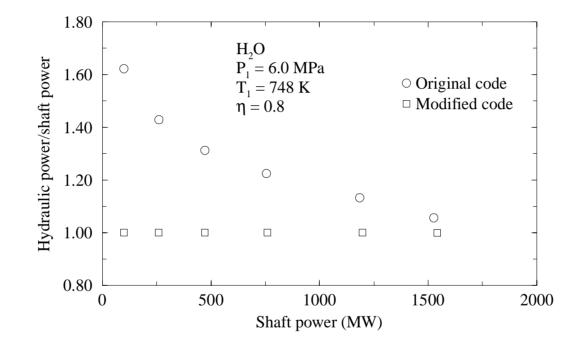
- Turbine second junction must be connected to the "cross direction", i.e. 'y' or 'z' faces
 - old decks must be modified



Test Case Description

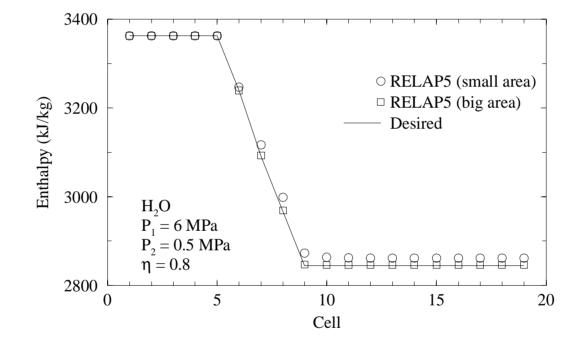
- Existing turbine test case modified four turbine components
- "Dummy" turbine upstream of first active turbine converted to single volume
- Moisture separator junction added to last turbine component for second series of test cases
- Control system added to compute rate of removal of stagnation enthalpy from fluid and compare to turbine shaft power

Test Case Schematic



Test Case Boundary Conditions

- Inlet TDV pressure and temperature fixed 6.0e+06 Pa and 748 K
- Outlet TDV pressure varied 6.0e+06 to 0.5e+06 Pa
- Flow rate varied from 2100 kg/sec to 3000 kg/sec
- No moisture separator junction



Test Results Energy Conservation

Test Results (cont.) Enthalpy Distribution

Test Results (cont)

- Two test runs with moisture separator
- Reduced inlet temperature to get two-phase in last turbine component
- First run with separator efficiency of 1.0e-06
- Ratio of hydraulic power to shaft power 0.99848, identical to case with no separator junction
- Second run with separator efficiency of 0.999
- Ratio of hydraulic power to shaft power 0.99847
- Flow rate of liquid out separator junction equal to amount of liquid removed by separator

Summary

- Energy equation for turbine volume corrected
- Modified geometric constraints for turbine components
- Test results verify that turbine improvements implemented correctly and producing expected results
- New user specified efficiency, frictional torque, and moment of inertia options added

