

Licensing Analysis of RPV and BOP Blowdown for the Event of FWLB with RELAP5-3D/K for Lungmen ABWR Containment Design

Prepared by : Thomas K.S. Liang Affiliated to : Institute of Nuclear Energy Research, Taiwan

Contents

Introduction
System Modeling with RELAP5-3D
Assumptions
Results
Conclusions
Special Issue of LPFL Injection Bypass

- Conventionally, the limiting break for BWR containment design is the recirculation line break.
- In the ABWR design, the jet pumps driven by the recirculation loops are replaced by the reactor internal pumps (RIPs).
- As a result, the limiting break for ABWR containment design shifts to the Feedwater Line Break (FWLB).

Introduction

Essential Processes to be calculated

- (1) Critical flow at the break ends or the internals, such as FW sparger and venturi;
- (2) Flashing of RPV inventory and FW near the break;
- (3) Run out and coast down of the FW pumps;
- (4) Steam extractions to FW heaters and FWP turbines;
- (5) Flashing of saturated water initially stored inside the FW heater shell sides and MSR drain tanks;
- (6) Energy release from saturated water and system metal,
- (7) Cold water transportation from the main condenser to the break; and
- (8) ECC injections and associated level variations.

System Modeling with RELAP5-3D -Modeling Scope-

NPP4 System Simulation Diagram

Engineering Simulator

核子工程組

Modeling of RPV and Steam Lines

Engineering Simulator

Modeling of Main Steam & Turbine Systems

Engineering Simulator

TDV

Modeling of Inboard & Outboard Breaks

Engineering Simulator

核子工程組 11

Initial Conditions

Parameter	Initial Value (INER)	Initial Value (GE)
Reactor Thermal	4005.0	4005.0
Power [MWt]	(102 %)	(102%)
RPV Dome	7.31	7.31
Pressure [MPa]	(102 %)	(102%)
RPV Core Flow	16,107	16,110
[kg/s]	(111.1 %)	(111.1%)
RPV Narrow Range Water	426.0	427.0
Steam and Feedwater Flow [kg/s]	2177.8 (102 %)	2174.0 (102%)
Feedwater	216.9	216.9
Temperature [°C]	(102 %)	(102%)

Engineering Simulator

核子工程組

Sensitivity Studies

RPV modeling: (1) initial core flow

Effect of Core Flow on the Initial RPV Inventory

Effect of Initial Core Flow on the Accumulated RPV Blowdown Mass

□*Plant Operations*

Extraction steam continues to enter the feedwater heater and the feedwater pump turbines until steam inventory is depleted or blocked by the non-return valves designed to protect main turbines;

≻Non-safety systems and components are assumed to fail in ways that maximum the amount of water mass and energy blowdown;

➢ Feedwater flow to the vessel through the unbroken line continues intermittently through the event, depending on the feedwater line and RPV pressures.

➤MSIVs will be fully closed within 3.0-4.5 seconds[3-4], and 3.0 seconds is conservatively assumed for inboard break (RPV and BOP blowdown);

After 30 minutes after break for long term blowdown calculation, HPCF and RCIC injections will be terminated and LPFL injection will be regulated to maintain water level between L-2 and L-8.

Engineering Simulator

核子工程組 14

□ Modeling Assumptions

Homogeneous Moody model is applied to calculate blowdown flow rate;

The effects of internal choking at Venturi of FW system and Spargers inside RPV are considered;

The pump curves of flow run out are used to model the FWPs;

➢Flashing of water depressurized below its saturation point and the associated effect of flashing on steam supply are considered;

The effect of stored heat from metal and saturated water stored in feedwater heater shell sides on the feedwater heating are considered;

D*RPV* Short-Term Inboard Break

Sequence of Events of FWLB Inboard Break

Time [s]	Events
0.000	Feedwater line break.
0.310	L-4 and 10 RIPs Runback (L-4 + 0.0s, not apply).
5.000	Reactor scram by drywell high pressure (Assumption).
5.393	L-3, Trip of 4 RIPs without MG set $(L-3 + 0.0s)$.
12.629	L-8, Turbine trip (L-8 + 0.0s, not apply), and Feedwater pump turbine trip (L-8 + 0.0s, not apply).
19.268	MSIVs closure by main steam line low pressure.
26.742	L-2, Trip of 3 RIPs with MG set $(L-2 + 0.0s)$.
31.000	HPCF startup complete (Drywell high pressure + 26.0s).
32.742	Trip of other RIPs with MG set $(L-2 + 6.0s)$.
34.000	RCIC startup complete (Drywell high pressure + 29.0s).
41.000	LPFL startup complete (Drywell high pressure + 36.0s).

D*RPV* Short-Term Inboard Break

Break Flow from RPV Side

Break Flow Enthalpy from RPV Side

QRPV Short-Term Inboard Break

Reactor Water Levels

ECC Injection Flows

Pressure Responses before and after MSIV

Flows through both the Intact and Broken FW Lines

Feedwater Pump Run out Speed

BOP Blowdown Flow Rate

□BOP Short-Term Inboard Break

Extraction Steam Flow from Low Pressure Turbine

Feewater Heater Shell Side Pressures

□BOP Short-Term Inboard Break

BOP Blowdown Enthalpy

Comparison BOP Blowdown Enthalpy against PSAR Curve

BOP Short-Term Inboard Break

Comparison of the Blowdown Flow against PSAR Curve Comparison of the Accumulated Blowdown Energy against PSAR

- The blowdown licensing analysis of FWLB have been successfully analyzed by the advanced RELAP5-3D/K, which include
 - Inboard & Outboard break
 - RPV & BOP blodwodn
 - Short term & long term
- All essential processes involved can be adequately simulated by RELAP5-3D/K:
 - (1) critical flow at the break ends or the internals,
 - (2) flashing of RPV inventory and FW near the break,
 - (3) run out and coast down of the FW pumps;
 - (4) steam extractions to FW heaters and FWP turbines;
 - (5) flashing of saturated water initially stored inside systems;
 - (6) energy release from saturated water and system metal,
 - (7) cold water transportation from condenser to the break; and
 - (8) ECC injections and associated level variations.

- Through comparisons against the PSAR curves for the inboard break, it was observed that
 - The revised accumulated blowdown mass can be bounded in the first 180 seconds,
 - The revised accumulated blowdown energy can only be bounded in the first 120 seconds.

□ What is the LPFL Injection Bypass?

- A two-phase mixture water column with cold ECC water above might exist in the DCM during a FWLB event.
- The effective hydraulic head of this mixture water is not enough to bring the DCM water into the core core.
- Once DCM water level ascends to the FW rings, all the LPFL injection water will be directly driven to the break without entering the core shroud.

Special Issue of LPFL Injection Bypass

Engineering Simulator

核子工程組 28

Special Issue of LPFL Injection Bypass

RPV Water Level Responses

Balance of RPV Boundary Flows

Engineering Simulator

核子工程組 29