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Introduction & Project Overview

• Bechtel and Lockheed Martin collaborated on a design of a nuclear 
reactor for the NASA Jupiter Icy Moons Orbiter (JIMO) under Naval 
Reactors’ cognizance.

• The JIMO mission would have required 100 – 300 kWe to propel the 
spacecraft to the outer planets, orbit the moons, and perform scientific 
investigations from lunar orbit.

• A gas-cooled fast reactor (GFR) directly connected to one or more 
closed-loop Brayton cycles was chosen as the best candidate to meet 
the mission requirements based on current technology.

• A RELAP5-3D model of the reactor and closed-loop Brayton cycle was 
developed to perform dynamic analysis of the JIMO reactor plant.

• The RELAP5-3D computer code is used at Bechtel and widely in the 
commercial nuclear industry for dynamic analysis of nuclear reactor 
plants.

• The remainder of this presentation discusses a technique developed at 
Bettis to model the compact counter-flow heat exchangers used in the 
Brayton cycle.
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Introduction & Project Overview

• Gas coolant is 22% Xenon, 78% 
helium by mole fraction

– Low Prandtl Number
• Two Brayton loops depicted 

here, actual model concept 
utilized two but the number on 
the flight unit was yet to be 
determined.

• Recuperator included in each 
loop to improve cycle efficiency

• Gas Cooler included in each 
loop to transfer waste heat 
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RELAP5-3D Model
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Counter Flow Heat Exchangers



IRUG 2006 PRE-DECISIONAL - For planning and discussion purposes only 7

Modeling Counter-Flow Heat Exchangers with Control Volume 
Codes

• Numerous control volumes required to model counter-flow heat 
exchangers in RELAP5-3D and other similar codes.
– Constant temperature assumption over control volume
– Control volume temperature based on outlet temperature derived 

from energy conservation
• Large number of control volumes increase problem run time

– Reduces material Courant Limit
– Increases number of calculations

• Large number of control volumes may invalidate constitutive 
requirements
– Not a concern for single phase heat exchangers

• Small number of control volumes increase calculation error due 
to constant exit temperature assumption
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Temperature Error

• Wall temperature 
boundary conditions 
applied from different 
axial planes

• Error introduced into the 
ΔT applied across the 
heat structure

• Error inversely 
proportional to number of 
sub-volumes

• Current wall temperature 
coupling imposes a lower 
sub-volume limit
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Correcting Temperature Error

Correct the Heat Transfer

• Use code multipliers to 
artificially increase U

– May alter transient behavior
– Diminishing returns as number 

of control volumes is decreased
– All codes may not have this 

capability
• Arbitrarily increase A

– May alter transient behavior
– Diminishing returns

Minimize the ΔT Error

• Increase sub-volumes
– Slows problem execution

• Lowers courant limit
• Increases calculations

– May invalidate constitutive 
models

– May require excessive sub-
volumes to minimize error

• JIMO recuperator required 
1000 sub-volumes to reduce 
error below 1%

TUAQ Δ=
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Staggered Mesh Solution

• Wall temperature 
boundary conditions 
applied from same 
axial plane

• Eliminates error 
introduced into the ΔT 
applied across the 
heat structure

• Does not account for 
heat structure ends
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Accounting for End Volumes
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• End volume extrapolated heat added/subtracted to respective 
volumes

• Thermal equilibrium maintained by evenly dividing the difference
between hot and cold side extrapolated heat values among all heat 
exchanger volumes

• Successful application of this method for the JIMO project resulted in 
steady state heat exchanger effectiveness values within 1 percent of 
those calculated by CCEP calculations carried out at NASA GRC
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Errors Introduced

• Method correctly calculates how much heat should be transferred 
between pseudo-nodes as depicted in the above picture

– Pseudo-nodes comprised of ½ the sub-volume before and after the 
temperature point

• Heat is transferred “forward” from hot side 1 to cold side n-1, hot 
side 2 to cold side n-2, etc.

• Results in a slight discrepancy between this method and the analytic 
solution

• Total steady state error was less than 1 percent relative to CCEP
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Limitations

• Method provided excellent agreement with steady state 
benchmarking

• Transient solution was not rigorously tested due to project 
termination

• Method would not have correctly calculated heat transfer during 
reverse flow conditions
– No reverse flow operations were planned or anticipated
– Any reverse flow conditions brought on by equipment malfunctions

would have been quickly corrected or isolated
– Calculations would have returned to normal once the flow reversal 

was corrected
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Compact Heat Exchangers

• Offset strip fin design
– Required an overall temperature effectiveness to decrement the 

total heat transfer area used in the analysis code
– Enhanced heat transfer by preventing fully developed flow

• Required modifications to the heat convection correlations

• The He Xe mixture proposed for the primary system had an 
extremely low Prandtl number (~0.2)
– Required modified heat convection correlations
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Temperature Effectiveness

Temperature Effectiveness:

Fin Effectiveness:

Fin Parameter:

• Temperature effectiveness used as a heat transfer design factor to 
directly decrement the heat transfer coefficient.  It could also be used 
in pre-processing to decrement the heat transfer area.

• Temperature effectiveness is a function of heat transfer coefficient (h) 
and may vary during transients.

– Input as a constant for JIMO.  This would have been investigated had the 
project continued.
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Heat Convection Coefficient Correlations

• Two constant Nusselt Number laminar correlations available in 
RELAP5-3D
– Exact solution for circular tubes (Sellars, Tribus, and Klein )

Nu = 4.36
– Exact solution for large aspect ratio flat plates (ORNL)

Nu = 7.63
– Flat plate solution more accurately represents the compact heat 

exchangers
• RELAP5-3D also has a Reynolds Number dependency relation 

for laminar flow (PSU)

Nulam Re( ) Nuanalytic 0.414 5.91 10 4−
⋅ Re⋅+( )
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ORNL/PSU Correlation vs. Kays & London

• Modified RELAP correlation has essentially the same slope as 
the empirical correlation developed by Kays & London for a 
similar heat exchanger

• Nusselt Number predictions over the range of Reynolds 
Number of interest are within 15 percent

Comparison of Kays & London and ORNL/PSU Heat Transfer Correlations
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Correction for Entrance Effects

• ORNL Nusselt Number increased by 13% (Nu = 8.63) to 
account for entrance effects

• RELAP5-3D prediction nearly identical to Kays and London

Comparison of Kays & London and modified ORNL/PSU Heat Transfer Correlations
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Bounding the Proposed Nusselt Number Increase

• Each of the strip fins in the compact heat exchangers 
considered for JIMO had a length of 0.125 in

• Integrating and normalizing the Polhausen analytical solution for 
the heat transfer coefficient over the length of a fin provides an 
upper bound for the Nusselt Number increase

• 13 percent is well within the factor of two increase shown here
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Results

Kays & London RELAP5-3D Relative Error (%)

Recuperator (Nu = 7.63)

e 0.9449 0.9412 -0.38

Q (kW) 366.7 365.3 -0.38

TH,in (K) 920.6 920.6

TH,out (K) 564.1 566.0 0.53

TC,in (K) 535.1 535.1

TC,out (K) 899.4 895.3 1.15

Modified Recuperator (Nu = 8.63)

e 0.9449 0.9490 0.43

Q 368.6 370.2 0.43

TH,in 920.4 920.4

TH,out 562.7 561.6 -0.31

TC,in 533.5 533.5

TC,out 899.1 898.0 -0.31
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Conclusions

• Improved calculation accuracy
– Staggered heat structure mesh imposed more realistic wall 

temperatures
– Temperature effectiveness corrected heat transfer area
– ORNL/PSU convection correlation agrees closely with empirical 

data
• Staggered heat structure mesh reduced JIMO heat exchanger 

sub-volumes by a factor of 4.
– Increased Material Courant Limit
– Decreased problem run-time

• Increased volume aspect ratio to satisfy RELAP5-3D 
constitutive requirements

• Code modifications being made by the INL to allow volume 
average temperature selection for wall boundary conditions
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