daho National Laboratory

#### RELAP5-3D Conversion to Fortran 90

#### **RELAP5 International Users** Seminar

Dr. George L. Mesina

August 16-18, 2006

## **Outline of Presentation**

- Goals & Benefits (User and Developer)
- Three Types of FORTRAN 90 Conversion

   Fixed Length Commons, FA-Files, Rewrites
- Progress and Measurements
- Future Plans
- Acknowledge contributions from:
  - Dr. Richard Riemke and Dr. Paul Murray
  - Peter Cebull (in near future)



## **Ultimate Goal & Benefits**

- <u>Ultimate Goal</u>: modernize RELAP5-3D
  - Improve code legibility and understandability
  - Reduce development and maintenance costs
  - Extend code longevity
  - Take advantage of hardware and software developments
- Project goal: convert RELAP5-3D to FORTRAN 90
  - Machine independence via F90 intrinsics
  - Eliminate memory restrictions



## **Goals and Benefits**

- Intermediate project goals
  - <u>Eliminate FA</u> "container" array
    - Replace "internal files" with modules
    - Use pointers for plots, trips, controls, etc.
  - <u>Simplify code</u> w/o changing calculations
    - Reorganize databases
    - Apply structured programming
    - Reduce coding via FORTRAN 90 capabilities
  - <u>Replace</u> obsolete coding constructs



# **Project Goals and Benefits**

- User benefits
  - Program expands memory to fit problem (no fixed size limit except for input constraints)
  - Code runs on latest platforms for decades to come
  - Can parallelize across hydrodynamic systems for speed-up
- Developer benefits
  - Much easier to read, understand, modify
  - Modern programming practices/language reduce learning time for new developers



## **Transient Conversion Methodology**

- Subtasks based on types of conversion
  - Fixed length common, FA-Files, rewrites
- <u>Fixed length common</u> block COMDECKS have only scalars and short fixed-length arrays.
  - Create a module w/ no equivalences.
- <u>FA-Files</u> have scalars and variable length arrays organized in sometimes complex patterns.
  - Create resizable derived types in modules.
- <u>Rewrite</u>: write a new subroutine that does the same thing better.



# **Fixed Length Common**

- Contents 3 sections:
  - Data declaration; Variable dictionary; Contained subroutines (initialization)
- SCDAP complication not part of F90 conversion
  - Maintain COMDECKS for SCDAP usage
  - Pre-compiler flags protect modules & COMDECK
  - Size of COMDECK section sextupled
- **RESTART-PLOT** file order must be preserved
  - Declared derived type with SEQUENCE statement
  - Scalars become pointers to derived type.



#### **FA-File Conversion**



## **FA-Oriented Database**

- Database organized into *internal files* called <u>FA-files</u>
- An FA-file is a collection of data related by physical or computational meaning

– File 4 = control volume data, File 8 = heat data

- All FA-file arrays are *equivalenced* to the FA-array
- Difficult to understand
  - Equivalence of real/integer/character/logical data
  - Non-contiguous arrays, conditional arrays
  - Pointers (use of FA-indices) w/in & w/o FA-file
  - Layout of arrays in FA-file often complex



# Example: typpwr2.i, File 8, HSG\_1



Idaho National Laboratory

## Example: typpwr2.i, FA-File 8



 There are numerous pointers (FA index arrays) between the HSG sections <u>and</u> to other FA-files.

Idaho National Laboratory

## Methodology to convert an FA-file

Decipher  $\rightarrow$  Redesign  $\rightarrow$  Convert  $\rightarrow$  Test

- 1. Decipher FA-file
  - Read manual and comment comdeck
  - Usage in the code reveals database's structure
- 2. <u>Redesign</u> database & implement as F90 module
  - Organize data into derived type arrays & scalars
  - Create size calculations (where unavailable)
  - Create memory allocation subroutines
  - Create data transfer subroutines that move data between FA-file and module.



## **New Heat Structures Database**

- Data is grouped by physical meaning and is contiguous.
- Much simpler structure.

HS derived type array, 146 attributes (former arrays) for each HS HS<sub>1</sub> HS<sub>2</sub> ... HS<sub>K</sub> HS<sub>K+1</sub> ... HS<sub>H</sub>

HSG Pointers/Geometry derived type array (4 geom. attributes) - HSG starting ordinal in HS, mesh, and temp arrays are 'pointers'

Mesh Point Data derived type array (8 mesh attributes)

$$X_1 X_2 \dots X_G X_{G+1} \dots X_P$$

Temperature Data derived type array (2 attributes, old & new) $T_1 T_2 \dots T_{GK} \quad T_{GK+1} \dots \dots T_N$ 



## Methodology to convert an FA-file

- <u>Convert</u> source code
  - Add initialization, size, and memory to modmem
  - Convert subroutines that use the FA-file.
    - Add use statement, XFR routines & controls
    - Convert FA arrays to module references
      - Replace FA-indices with ordinals.
      - Handle special issues (indexing, etc.)
  - Convert subroutines in the proper order.
- <u>Test and debug</u> to ensure that all test problems produce identical calculations



#### **Conversion Order of an FA File Subtree**





# **Normal File-Conversion Actions**





# **Classifying FA-files**

- 1. Standard single fixed stride, all data same length
  - FA-Files: 2, 4, 5, 7, 10, 14, 24, 28, 30, 35
- 2. Interwoven several fixed strides, different lengths
  - FA-Files: 20, 25, 37
- 3. Complex varying strides, 2+ arrays equivalent to one FA index, direct use of FA/IA, 3+ comdecks, ...
  - FA-Files: 1, 3, 6, 8, 9, 11, 12, 13, 18, 21, 27, 29, 31, 32, 33, 38, 43, 44, 47
- 4. Removable *absorb*, <u>delete</u>, or temporarily disable
  - FA-Files: <u>15</u>, <u>16</u>, <u>17</u>, <u>19</u>, <u>22</u>, <u>23</u>, <u>26</u>, 34, 36, <u>39</u>, 40, <u>41</u>, <u>42</u>, 45, 46



# FA Kind vs. How Work Is Done

| FA Kind    | Module Construction                    | Source Conversion                                                |
|------------|----------------------------------------|------------------------------------------------------------------|
| Standard   | Straightforward.<br>Can automate.      | 100s to 1000s of lines.<br>Can automate.<br>Some manual changes. |
| Interwoven | More difficult.                        | Fewer lines.                                                     |
|            | Can automate but must modify manually. | Often manual.                                                    |
| Complex    | Very difficult.<br>Always manual.      | Always manual.                                                   |

- Beyond simple conversion, some subroutines must be rewritten.
  - For example: CONVAR, SCNREQ, Restart.



### **Subroutine Rewrite**



### **Example: SCNREQ, Heat Section**





## **Example: SCNREQ**

- The heat structure section has 105 lines of code.
  - 36 statement labels, 35 GO TO statements
  - Logic paths difficult to follow.
- Each user request section is similar.
- Next user request section found by scrolling forward.
- SCNREQ is difficult to read, understand, modify
  - Minimal comments and character strings
  - Redundant data, inconsistent names, etc.



# **Example: IREQUEST vs. SCNREQ**

User request <u>sections</u> are contained <u>subroutines</u>.





# **Example: IREQUEST vs. SCNREQ**

- SCNREQ special data handler is hard to understand if (i .eq. 1 .or. i .eq. 11 .or. i .eq. 12 .or. i .eq. 13 .or. i .eq. 14) go to 384
- The IREQUEST handler is more obvious.

if ( any( alph == (/ 'htvat', 'htpowg', 'h2gen', 'oxti', 'oxto' /)) ) then

• SCNREQ assigned GOTO replaced by a CASE statement and a pointer replaces FA-indexing.





## **Measurements of SCNREQ Rewrite**

| Category           |   | SCNREQ |       | IREQUEST |       | Improvement |      |
|--------------------|---|--------|-------|----------|-------|-------------|------|
| Lines of code      |   | 2981   |       | 1563     |       | 1.9         |      |
| Comments           | % | 203    | 6.8%  | 382      | 24.4% | 1.9         | 3.6  |
| GOTO stmts         | % | 717    | 24.1% | 0        | 0.0%  |             |      |
| Statement labels   | % | 572    | 19.2% | 6        | 0.4%  | 95.3        | 50.5 |
| Ave. Nesting Depth |   | 46     |       | 11       |       | 4.2         |      |
| Max Nesting Depth  |   | 138    |       | 17       |       | 8.1         |      |
| McCabe Index       |   | 687    |       | 55       |       | 12.5        |      |



### **Progress & Measurements: July 06**

- Task D: Rewrite Special Subroutines
  - SCNREQ and CONVAR rewritten
  - BPLU half rewritten (10 subroutines)
- Task B: Fixed length common blocks

| Task B                    | FA-File/ | Files |
|---------------------------|----------|-------|
|                           | Modules  |       |
| <b>Conversions to F90</b> | 46       | 1889  |
| % Finished                | 100%     | 100%  |



#### **Progress and Measurements**

#### As of August 2006

| Task C: FA-file conversion  | FA-File/ | Files |
|-----------------------------|----------|-------|
|                             | Modules  |       |
| <b>Conversions to F90</b>   | 28.5     | 684   |
| Absorbed/ deleted/ disabled | 15       |       |
| Remaining conversions       | 3.5      | 190   |
| % finished                  | 93%      | 77%   |



## July 06 Progress on the F90 Project

- <u>Permanent</u> modifications
  - Number of F90 Modules added: 70
  - Lines of code in modules added: 11449
  - Lines of USE statements added: 3664
  - Lines of source code with %: 29537
- <u>Temporary</u> conversion additions
  - Lines using IORDINAL functions: 2767
  - Lines of data transfer added: 2721
- <u>Total</u> of these conversions & additions: 50138



## **Future Plans**

- Complete restructuring
- Complete conversion of transient
- Convert input
- Eliminate FA array
- Convert environmental, fluids, peripherals
- Clean-up FORTRAN 90 conversion
- Final report & paper

