## Thermal-Fluid Modeling Using RELAP5 and COMSOL

By: Lee Tschaepe Dr. Arthur Ruggles

## Hotspot Analysis

- Develop Analytic Model
- Develop RELAP5 and COMSOL Models
- Bulk Temperature and Clad/Coolant Temperature Profiles
- Turbulent Conductivity
- Value Added
- Qualifying Codes

#### **HFIR Core Diagram**



Fig. 3. HFIR Fuel Assembly.

## Model Diagram



## **HFIR Cooling System Facts**

- Flow Rate is -15.8 m/s (down flow)
- Pressure Drop is 100 psi
- Coolant Channel Gap = 0.00127 m
- Axial Length = 0.508 m
- Core Power = 85 MW

#### Hotspot Model



#### **Power Profile**



## Analytic Development

• Simple Conservation of Energy

$$Q = \dot{m}c_p \left(T_{out} - T_{in}\right)$$

- Functionalize material properties
- Heat Transfer Coefficient via Dittus Boelter

$$h = \frac{k(Nu)}{D_H}$$

$$Nu_{db} = 0.023 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{0.4}$$

## **COMSOL** Mesh Density



#### **RELAP5** Simulation

| TMDPVOL   |
|-----------|
| TMDPJUN   |
| PIPE1     |
| SNGLJUN 1 |
| PIPE2     |
| SNGLJUN2  |
| PIPE 3    |
| SNGLJUN3  |
|           |
|           |

#### R5 and Analytic Bulk Temperature, COMSOL Centerline Temperature



#### Clad/Coolant Temperature



## **Turbulent Conductivity**

- Turbulence is suppressed in the near wall region such that diffusivity declines to molecular values.
- Turbulence enhances fluid effective conductivity,  $\lambda$ .

$$\lambda = \frac{c_p \upsilon}{\Pr_t}$$

#### **Turbulent Conductivity**



#### New Clad/Coolant Temperature



# COMSOL Heat Flux at Clad/Coolant Interface



## Fluid Temperature Profiles



#### Fluid Hotspot Temperature Profile



## **Concluding Remarks**

- RELAP5 and Analytic results agree.
- COMSOL predicts higher heat transfer coefficient.
- RELAP5 executes in 1/100<sup>th</sup> the time and requires significantly less computational resources.
- COMSOL offers a lot of utility to the user and options to "tailor the physics" to a specific situation.