

Grad

Piero

ပ်

ruppo Ricerca Nucleare

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA MECCANICA, NUCLEARE E DELLA PRODUZIONE VIA DIOTISALVI 2, 56100 PISA

2009 RELAP5 International User's Seminar

Park City, Utah -August 11,12,13, 2009

ENLARGEMENT OF THE ASSESSMENT DATABASE FOR ADVANCED COMPUTER CODES IN RELATION TO THE VVER TECHNOLOGY: <u>BENCHMARK ON LB-LOCA TRANSIENT</u>

IN PSB-VVER FACILITY

UNIPI (Italy, Coordinator): EREC (Russia): Gidropress -1 (Russia): Gidropress -2 (Russia): NRI (Czech Republic): <u>A. Del Nevo</u>, M. Adorni, F. D'Auria O.I. Melikhov, I.V. Elkin V.I. Schekoldin, M.O. Zakutaev S.I. Zaitsev M. Benčík

Piero a Grado

ທີ

Gruppo Ricerca Nucleare

LIST OF CONTENTS

INTRODUCTORY REMARKS

- ► FRAMEWORK: THE OCED/NEA PSB-VVER PROJECT
- ➢ OBJECTIVES OF THE TEST 5a AND OF THE ANALYTICAL EXERCISE
- PARTICIPATING ORGANIZATIONS
- THE EXPERIMENT
 - PSB-VVER FACILITY DESCRIPTION / CONFIGURATION
 - ► TEST 5A (CL-2X100-01) DESCRIPTION

THE ANALYTICAL ACTIVITY

- COMPARISON AMONG PARTICIPANTS INPUT DECKS
- COMPARISON AND EVALUATION OF STEADY STATE RESULTS
- COMPARISON AND EVALUATION OF REFERENCE RESULTS
 - ✓ QUALITATIVE ACCURACY EVALUATION
 - TABLE OF RESULTING SEQUENCE OF MAIN EVENTS
 - SELECTED TIME TRENDS
 - QUALITATIVE ACCURACY EVALUATION OF THE RTA
 - ✓ QUANTITATIVE ACCURACY EVALUATION BY THE FFTBM

CONCLUSIVE REMARKS

INTRODUCTORY REMARKS

- Grado S. Piero a Gruppo Ricerca Nucleare
- VVER reactors have some unique and specific features (e.g. large primary and secondary side fluid inventory, horizontal steam generators, core design) which require dedicated experimental and analytical analyses
- The predictive capabilities of computer codes used in reactor safety analysis should be validated against relevant test data.
- To this purpose a "<u>VVER code validation matrix</u>" was developed in the framework of the OECD/NEA activities following the experience of the validation matrices for LWR already developed in the '80 and then extended in the '90
- The OECD/NEA PSB-VVER Project (2003-2008) has been set with the objective to obtain the required experimental data not covered by the VVER validation matrix.

FRAMEWORK: THE OCED/NEA PSB-VVER PROJECT

- "In support of validation of thermal-hydraulic codes and of safety assessments for VVER-1000 reactors on the basis of PSB-VVER experiments"
- Project objective: provide unique experimental data that are needed for the validation of thermal-hydraulic codes and to support safety assessments for VVER-1000 reactors.

PSB-VVER experiments constitute a relevant extension of the code validation database and will cover "white spots" in the VVER code validation matrix

	m	· · ·	
No	(date)	Test	Note
1	UP-11-08 (2002).	11% Upper Plenum break"	Counter-part of the ISB- VVER test
2	NC-1 (2003)	Natural Circulation	Parametric study
3	CL-4.1-03 (2004)	4.1% cold leg break test	Counter-part of LOBI, BETHSY, SPES and LSTF
4	PSh-1.4-04 (2005)	Primary to secondary leak	Analytical Exercise (Blind test)
5a	CL-2x100-01 (2008)	Large cold leg break @ Low Power	Not in the original TM
5	NO	Large cold leg break	Full power experiment (10MW core bundle will be installed in the installed in the ity) TO BE EAECUTED BY JUNE 2008

Piero a Grado

OBJECTIVES OF TEST 5a & OF ANALYTICAL EXERCISE

- The OECD/NEA PSB-VVER Test 5a (CL-2x100-01) simulates a large break LOCA in VVER-1000/320 system
- The main objectives of this test are:
 - to investigate the thermal-hydraulic response of the VVER-1000 primary system to guillotine break of cold leg
 - to obtain experimental data for validation of thermal-hydraulic codes applied to LB-LOCA analysis of VVER-1000
 - to evaluate the capabilities of the PSB-VVER facility to simulate the LB-LOCA in VVER-1000

The main objectives of the benchmark are:

- to assess the current capabilities of the TH-SYS codes on the domains of interest
- > to develop a common understanding and to promote an exchange of knowledge
- to draw conclusions on the possible use of the codes for regulatory bodies and the industry

Gruppo Ricerca Nucleare S. Piero a Grado

PARTICIPATING ORGANIZATIONS

- OECD/NEA PSB-VVER Project Test 5a (CL-2x100-01) benchmark
 - by four participants
 - three different institutions
 - four different thermal-hydraulic system codes

N.	Participants	Organization/Country	Email	Code/ Version	Additional information
1	SCHEKOLDIN V. I. ZAKUTAEV M. O.	Gidropress (EDO-GP) <u>RUSSIA</u>	zakutaev@grpress.podolsk.ru	KORSAR-GP V9.027.004 V9.031.000	Pre- and post- tests performed
2	ZAITSEV S.I.	Gidropress (EDO-GP) <u>RUSSIA</u>	zakutaev@grpress.podolsk.ru	Tech-M	Pre- and post- tests performed
3	BENČÍK M.	Nuclear Research Institute Řež plc (NRI) <u>CZECH REPUBLIC</u>	<u>ben@ujv.cz</u>	ATHLET 2.1 Cycle A	
4	DEL NEVO A. ADORNI M. D'AURIA F.	University of Pisa (UNIPI) <u>ITALY</u>	a.delnevo@ing.unipi.it	RELAP5-3D© V2.4.2	

PSB-VVER FACILITY DESCRIPTION

- Simulator of VVER-1000/320
- Full height ITF
- $\hfill\square$ Power and volume are scaled 1:300
- □ Four separated loops
- □ ECCS simulated (HPIS, LPIS, Makeup systems)
- □ 4 Hydro-accumulators
- $\hfill\square$ Separate pipes represent the internals of the VVER (DC, core and UP, core bypass)
- \Box The core is electrical type with indirect heating, hexagonal section simulated by 167
 - Fuel Rod
 - "low power" (1.5MW = 15% of nom. pow.) core is installed with uniform axial power profile
 - "high power" (10MW = 100% of nom. pow.) core is installed with uniform and nonuniform axial power profiles (to be used in test5)
- □ The SG consists of a hot and a cold collector and of 34 tubes coiled (the length is the same like the reference NPP)
- $\hfill\square$ The distributor of FW is a ring with several holes placed above the SG tubes
- $\hfill\square$ 4 separated SG are connected to a common steam header via a "low power" SL
- □ The test facility is equipped with advanced DAS and PCS with about 1000 measuring channels recoarding the measured data with frequencies of 20 Hz, 200Hz and 1000Hz.

 \mathcal{O}

Gruppo Ricerca Nucleare

PSB-VVER FACILITY CONFIGURATION

The facility has been set up as follows:

The PRZ connected to HL #4

The break device

- ▶ located CL #3 between the pressure vessel and the MCP
- ▶ rupture opening measure from 0.002 to 0.003s
- >D scaled with the diameter of the VVER-1000 main pipeline
- <u>Г</u>О 2 J) 4 MCP in operation and controlled
 - □ FW system: SGs level at 2.25m; FW temp. At 220°C
 - The core power is 1.5MW with uniform axial power distribution

□ ECCS available are:

- ➤ 3 out of 4 hydroaccumulators
 - ✓ ACC #1 and #3 connected to UP
 - ✓ ACC #4 is connected to DC
- ≥ 2 out of 3 HPIS systems
 - ✓ CL #1 (intact loop w/o PRZ connection
 - ✓ CL #3 (broken loop)
- > 2 out of 3 LPIS systems.
 - ✓ 1 LPIS pump \rightarrow two injection points connected through the accumulators lines to UP and DC
 - ✓ 1 LPIS pump \rightarrow two injection points connected to the HL and CL (loop #3)

#	INTERFACING SYSTEM	CHARACTERISTICS	STATUS	REMARKS
1	PRZ connection status	Loop #4.		
2	Break component	Connected to loop #3. Nozzles: Φ = 50mm; L = 350mm. Break opening time 0.001 - 0.01s		
3	Accumulators	 3 out of 4 systems available: 1 ACCUs with the DC. 2 ACCUs with the UP. 	Active 3 of 4 (failure of 1 ACCU connected with the DC)	ACCUs stop when lev < 1.01m.
4	ECCS HPIS	 2 out of 3 active systems: 1 CL of the broken loop. CL of an intact loop w/o PRZ connection. 	Active 2 of 3	Flow rate of a HPIS pump as function of the primary pressure
5	ECCS LPIS	 2 out of 3 active systems available: 1 LPIS connected through the accumulators lines to UP and DC. 1 LPIS connected to HL and CL of the loop #3. 	Active 2 of 3	Flow rate of a LPIS pump as function of the primary pressure
6	МСР	4 MCP in operation	Active	MCP coastdown relative rotation vs. time.
7	AFW /EFW		Not operated	
8	FW	The FW system is operated for keeping the level at the nominal value of 2.25m. The FW temperature is 220°C	Active	

THE EXPERIMENT

TEST 5A (CL-2X100-01) DESCRIPTION

OECD/NEA PSB-VVER CL-2x100-01: imposed sequence of main events

#	IMPOSED EVENT DESCRIPTION	INTERFACING SYSTEM	SIGNAL (TIME OR SET POINT)	REMARKS		
1	DEGB occurrence in CL of loop #3	Break component	0 s			
2	Reactor SCRAM	Core	0.4 s	Power vs. time assigned		
3	Trip of the MCP and cosadown	MCP	-0.3 s	Coastdown assigned		
4	Stop of FW pumps	FW pumps	FW #1 \rightarrow 4.7 s FW #2 \rightarrow 4.1 s FW #3 \rightarrow 10.8 s FW #4 \rightarrow 6.5 s			
5	Turbine valve closure	Main Steam Isolation Valve	0 s	Completed closed at 15.5s		
6	ECC accumulator injection start	3 Accumulators	PS pressure < 6.0MPa			
7	ECC accumulator injection stop	3 Accumulators	Level accumulator tank #1 < 0.68m Level accumulator tank #3 < 0.60m Level accumulator tank #4 < 0.35m			
8	ECCS connected to an emergence power supply	Active ECCS (HPIS and LPIS)	40.3s			
9	ECCS HPIS	2 HPIS systems	PS pressure < 10.80MPa and Event #8	Connected		
10	ECCS LPIS	2 LPIS systems	PS pressure < 2.50MPa and Event #8			
11	ECC Systems (LPIS and HPIS) stop	2 HPIS and 2 LPIS systems	Total mass injected > 1830kg			
12	End of the transient		Final core heat up and ECCS systems disabled	No emergency systems available for feeding the primary system (sump empty)		

TEST 5A DESCRIPTION

Six phases are distinguished:

- Blowdown ph. (0s 11.4s): from the SoT up to RPV level increase
- <u>Refill ph.</u> (11.4s 84s): up to the ACCUs effectiveness
- <u>PMI reduction ph.</u> (84s 159s): up to the onset of core heatup
- > Dryout ph. (159s 559s): up to core quenching
- Stable safe condition ph. (559s 921s): up to the active ECCS tanks emptying
- PMI depletion ph. and EoT (921s 1477s)

COMPARISON AMONG PARTICIPANTS INPUT DECKS

General information of the nodalization and the code options

			EDO-GP	EDO-GP	EDO-GP	EDO-GP	NRI	UNIPI
#	QUANTITY	Unit	Pretest	Posttest	Pretest	Posttest	Posttest	Posttest
			KORSAR	KORSAR	TECH-M	TECH-M	ATHLET	R5-3D
1	ADOPTED CODE RESOURCES							
1-1	Tot. No. of hydr. components PS						142	482
1-2	Tot. No. of hydr. components		185	193			164	620
1-3	Tot. No. of hydr. nodes (meshes) PS				76+36	76+36	693	
1-4	Tot. No. of hydr. nodes (meshes)		858	825	81+36	81+36	820	2474
1-5	Tot. No. of heat structures		52	65	81+36	81+36	90	2171
1-6	Tot. No. of mesh points in the heat structures		509	629	4	4	2108	11263
1-7	Tot. No. of core active structures		10	10	30	30	20	20
1-8	Tot. No. of core radial meshes in the active structures				7	7	3	13
2	NODALIZATION FEATURES							
2-1	No. of modeled loops		4	4	4	4	4	4
2-2	No. of horizontal tubes per SG		4	4	1	1	5	17
2-3	Core model (3-D or 1-D)		1-D	1-D	1-D	1-D	1-D	1D
2-4	No. of hydr. channels in core region		1	1	3	3	2	2
2-5	Crossflow junctions between parallel channels in the core		YES	YES	No	No	NO	YES
3	CODE OPTIONS		1			Î		
3-1	Reflood model TOP-DOWN			YES	YES	YES	NO	YES
3-2	Reflood model BOTTOM-UP			YES	YES	YES	NO	YES
3-3	CCFL model			NO	YES	YES	WALLIS	NO

2009 RELAP5 International User's Seminar - Park City, Utah - August 11, 12, 13, 2009

COMPARISON AND EVALUATION OF STEADY STATE RESULTS

The step includes two main tasks:

- ▶ 1 → the verification and evaluation of the geometrical fidelity of the model developed, also called the "nodalization development phase"
 - It consists in a systematic comparison between the volumes, the surfaces and the absolute and the relative vertical positions between the system to be modeled and the nodalization
- - The steady state qualification (step two) deals with the comparisons between the experimental measurements and the calculated results at the Start of Transient (SoT)

2009 RELAP5 International User's Seminar - Park City, Utah - August 11, 12, 13, 2009

THE ANALYTICAL ACTIVITY

COMPARISON AND EVALUATION OF REFERENCE RESULTS

TABLE OF RESULTING SEQUENCE OF MAIN EVENTS (part 1 of 2)

#	EVENT DESCRIPTION	EXP (sec)	EDO-GP Pretest KORSAR	EDO-GP Posttest KORSAR	EDO-GP Pretest TECH-M	EDO-GP Posttest TECH-M	NRI Posttest ATHLET	UNIPI Posttest R5-3D	Note
1	DEGB occurrence	0.0	0.0	0.0	0.0	00	0.0	0.0	Imposed event
2	Reactor SCRAM	0.0	0.2	0.2	0.2	0.2	0.0	0.0	Imposed event
3	MCP trip and coastdown	0.0	0.0	0.0	0.4	0.4	0.0	0.0	Imposed event
4	Turbine valve closure begins	0.0	0.0	0.0	0.1	0.1	0.0	0.0	Imposed event
5	Flashing of coolant at the outlet of core model	0.4	0.4	1.0	1.0	0.2	0.4	0.2	
6	UP Pressure < 10.8 MPa Coolant reaching saturation in CLs SGs outlet	0.54	0.4	0.8	0.8	0.9	0.35	0.2	
7	- Loop #1	2.8						5.0	
'	- Loop #2	2.3						4.9	
	- Loop #3	0.03						2.0	
	- Loop #4	3.1						4.7	
8	Coolant reached saturation at core inlet	1.0	1.0	1.0	1.0	0.6	1.4	1.3	
9	Primary pres. below secondary pressure	4.0-4.3	7.7	6.5	9.0	6.0	6.5	5.2	
10	Stop of FW pumps	4.1-8.7	5.2	4.0	0.4.0	0.4	0.0	0.0	
11	ECC Acc injection start	10.2- 10.7	9.2	11	10.0	12.0	10.9	11.1	
12	PRZ emptied (level < 0.1 m)	11	6.3	7.0	9.7.0	12.4	8.6	11.9	
13	Turbine valve fully closed	15.5	16.0	15.0				15.7	Imposed
14	Pressure in UP < 2.5 MPa	18.6	14.7	19	18.0	19.8	18.0	17.9	

2009 RELAP5 International User's Seminar - Park City, Utah - August 11, 12, 13, 2009

Gruppo Ricerca Nucleare S. Piero a Grado

TABLE OF RESULTING SEQUENCE OF MAIN EVENTS (part 2 of 2)

#	E	VENT DESCRIPTION	EXP (sec)	EDO-GP Pretest KORSAR	EDO-GP Posttest KORSAR	EDO-GP Pretest TECH-M	EDO-GP Posttest TECH-M	NRI Posttest ATHLET	UNIPI Posttest R5-3D	Note
	14	Pressure in UP < 2.5 MPa	18.	6 14.7	19	18.0	19.8	18.0	17.9	
	15	UP and PRZ pressures equalization	31	8	8	28	30	21	36.8	
	16	ECCS connected to an emergence power supply	40	40	40	40	40	40.3	40	Imposed event
	17	ECCS HPIS injection	40	40	40	40	40	40	40	
	18	ECCS LPIS injection	40	40	40	40	40	40	40	
		ECC Acc. injection stop								
	10	- Acc #1	89	77	93	113	104	95	88	
	1)	- Acc #3	107	7 7	100	115	104	104 95		
		- Acc #4	92	77	96				94	
	20	First dry out occurrence	159	94*	150	177	134	43	153	
	21	End of MCP coastdown	231	1 232	231	217	231	232	232	
	22	Max. PCT in the core	395	5 109*	339	232	476**	296	385	
	23	Overall quenching	559) 117*	462		559	487	493	
	24	All ECCS stop	92 1	1 862	872	898	884	903	923	
	25	Second dry out occurrence	118	7 106	1258	911	904	1148	1072	Top of the core
	26	End of calc. (Max Tcl=516°C) 147	7 1100	1566	1241	1230	1500 ***	1360	

THE ANALYTICAL ACTIVITY

COMPARISON AND EVALUATION OF REFERENCE RESULTS QUALITATIVE ACCURACY EVALUATION

THE ANALYTICAL ACTIVITY

COMPARISON AND EVALUATION OF REFERENCE RESULTS QUALITATIVE ACCURACY EVALUATION

COMPARISON AND EVALUATION OF REFERENCE RESULTS QUALITATIVE ACCURACY EVALUATION

QUALITATIVE ACCURACY EVALUATION OF THE RTA (part 1 of 2)

	PARAMETER				EDO-GP Pretest		EDO-	GP	EDO-	GP	EDO-0	GP	NRI Posttest		UNI Portt	PI
#		TYPE	UNIT	EXP	KORS	AR	KORS	AR	TECH	-M	TECH	-M	ATHL	ET	R5-3	D
					Value	J	Value	J	Value	J	Value	J	Value	J	Value	J
11	Sub cooled DDV flow anded	TOD		1117	10		· ·				0.2	Þ	12		22	Þ
1.2	Int DDV flowrete at ACC might time	TDA		441	410	-	744	M			626	M	676.2	M	715	M
1-2	Int. DRK 10001318 at RCC inject. time	TDA TDA	kg log	709	920	-	092	M	-		020	D	070.2	M	020	1ML
1-3	Int. BRK flowrate at 1 ^e downt time	TDA TDA	kg ba	1270	1234	R R	1477	P	-		1201	R R	071.3	M	1470	P
1.5	Int BRK flowrate at core quanching time	TDA	hg bg	2086	2754	P	2183	F	-		2181	F	2088.0	F	2145	F
1.6	Int. BRK flowrate at final denut time	TDA	ha la	2000	3000	F	3099	F			2101	F	3050.0	F	3106	F
2	RTA: PRZ BEHAVIOR			2330		-	3000				2033		3030.0		3100	
2-1	Time of emptying (lev < 0.1 m)	TSE	g	11	8	R	6.8	R			12.5	E	8.6	R	11.0	E
2-2	PRZ press /Prim, press, at 5 s	NDP	-	1.67	1.19	R	1.17	R			1.65	E	1.44	R	1.63	E
2-3	PRZ press/Prim, press, at 10 s	NDP		1.55	1	M	1	M			1.40	Ē	1.14	R	1.50	E
2-4	PRZ press/Prim. press. at emptying time	NDP		1.54	1	Μ	1.04	Μ	-		1.23	R	1.25	R	1.46	E
2-5	Time of PRZ-Prim, press equalization	TSE	8	33.6	30	Е	8	М			53	Μ	20.7	Μ	36.8	E
3	RTA: FIRST DRYOUT OCCURRENCE															
3-1	Time of dryout	TSE	8	159	81	Μ	150	R	-		134	E	42.8	Μ	153	E
3-2	PS mass / Initial mass at dryout occurrence	NDP		0.3			0.13	R					0.11	R	0.1	R
3-3	Core collapsed ley. (with reference to BAF) at droout occurrence \$	SVP	m	0.0		-	1.77	М	-	-	0.94	М	0.226	R	0.0	Е
3-4	Time of PCT	TSE	8	395	737	Μ	440	R			475	R	296	R	385	E
3-5	PCT	SVP	°C	428	217	Μ	339	R	-	-	521	R	398	E	478	R
3-6	Minimum core collapsed lex. \$	SVP	m	0.0	1.6	Μ	0.84	Μ	-	-	0.27	R	0.187	R	0.0	E
3-7	Time of core recovering	TSE	8	559	757	R	462	R	-	1	551	E	528	E	493	R
4	RTA: UP PRESSURE BEHAVIOR															
3-1	Press. at 10 s	SVP	MRa	6.2	5.41	R	6.63	R	-	١	6.64	R	6.41	E	6.5	E
3-2	Press. at 20 s	SVP	MRa	1.84	0.78	Μ	2.2	Μ			2.4	Μ	1.86	E	1.84	E
3-3	Press, at dry out time	SVP	MRa	0.52	0.23	Μ	0.4	R	-		0.34	Μ	0.62		0.43	R
3-4	Press. at core quenching time	SVP	MRa	0.23	0.18	Ε	0.345	Μ			0.2	E	0.19		0.28	R
3-5	Press. at final dryout time s	SVP	MRa	0.10	0.12	E	0.136	R	-		0.18	Μ	0.11		0.15	R
s	Value derived by the measure of the RPV level															

COMPARISON AND EVALUATION OF REFERENCE RESULTS QUALITATIVE ACCURACY EVALUATION

QUALITATIVE ACCURACY EVALUATION OF THE RTA (part 2 of 2)

#	PARAMETER	TYPE	UNIT	EXP	EDO-GP Pretest KORSAR		EDO-GP Posttest KORSAR		EDO-GP Pretest TECH-M		EDO-GP Posttest TECH-M		NRI Posttest ATHLET		UNIPI Posttest R5-3D	
					Value	J	Value	J	Value	J	Value	J	Value	J	Value	J
4	5 RTA: ACCUMULATOR BEHAVIOR															
5-1	ACCs intervention time	TSE	8	10.2-10.7	9.2	E	11.0	E			12	E	10.9	E	11.1	E
5-2	ACC1 press, 10 s after inject, time initiation	TSE	8	3.3-3.4	3.02	R	3.63	E		-	3.3	E	2.77	R	3.8	R
5-3	ACC1 press, 20 s after injection initiation	TSE	8	2.1-2.3	1.98	E	2.16	E		-	2.1	E	1.67	R	2.5	E
5-4	ACC1 press at ACCs isolation	TSE	8	1.03	1.03	E	0.915	E		-	0.945	E	0.72	R	1.01	E
6	RTA: ECCS (HPIS AND LPIS) BEHAVIO)R														
6-1	Total int. ECCS flowrate at first core dryout	SVP	kg	234	90	Μ	696*			-	662*	-	-		219	Ε
6-2	Total int. ECCS flowgate at first core quenching time	SVP	kg	1086	1592	м	1382*	R	-	-	1570*	-	-	-	939	R
6-3	Total int. ECCS flowrate at final core dryout	SVP	kg	1858	1823	Ε	2283*	-		-	2299*	-	-		1853	Е
7	RTA: PS MASS BEHAVIOR															
7-1	Minimum mass / initial mass	NDP		0.13	0.033	Μ	0.04	Μ		-	0.06	Μ	0.08	R	0.06	Μ
7-2	Primary mass / initial mass at core quench. time	NDP	I	0.33	-	١	0.13	М	-	١	0.22	R	0.17	М	0.18	М
7-3	Primary mass / initial mass at final core dryout	NDP	I	0.19	-	١	0.11	R	-	١	0.25	R	0.13	R	0.12	R
8	RTA: FINAL DRYOUT OCCURRENCE															
8-1	Time of dryout	TSE	8	1187	886	Μ	1256	R	-	-	904	Μ	1148	Ε	1072	R
8-3	Core collapsed leg. (with reference to BAF) at dryout occurrence	SVP	m	-	1.8	1	2.7	-	-	-	1.2	-	1.65	-	1.47	-
8-4	Cladding temperature reaches 516.°C (end of the transient)	TSE	8	1477	1100	М	1566	R	-	-	1230	R	1446	E	1360	R

The value include the mass injected by the accumulator systems

19

COMPARISON AND EVALUATION OF REFERENCE RESULTS QUANTITATIVE ACCURACY EVALUATION

2009 RELAP5 International User's Seminar - Park City, Utah -August 11,12,13, 2009

THE ANALYTICAL ACTIVITY

COMPARISON AND EVALUATION OF REFERENCE RESULTS QUANTITATIVE ACCURACY EVALUATION

2009 RELAP5 International User's Seminar - Park City, Utah -August 11,12,13, 2009

COMPARISON AND EVALUATION OF REFERENCE RESULTS QUANTITATIVE ACCURACY EVALUATION

2009 RELAP5 International User's Seminar - Park City, Utah - August 11, 12, 13, 2009

Grado

Piero a

Gruppo Ricerca Nucleare S.

CONCLUSIVE REMARKS

- The OECD/NEA PSB-VVER project provided unique and useful experimental data for code validation by the scaled down test facility PSB-VVER.
 - A benchmark activity has been carried out using the data of the experiments test #5a (identification CL-2x100-01: four participants and three different institutions were involved. The Western (i.e. ATHLET and RELAP5-3D©) and Eastern (KORSAR and TECH-M) advanced computer codes are appleid.
 - This benchmark activity is conducted through comprehensive comparisons based on the following steps:
 - comparison of the features of the analytical models applied;
 - verification of the code performance "at steady state level";
 - assessment of the code performance at "on transient level" based on a qualitative and quantitative (FFTBM) accuracy evaluations of the results.

UNIVERSITÀ DI PISA

DIPARTIMENTO DI INGEGNERIA MECCANICA, NUCLEARE E DELLA PRODUZIONE VIA DIOTISALVI 2, 56100 PISA

BENCHMARK ON OECD/NEA PSB-VVER PROJECT TEST 5A: LB-LOCA TRANSIENT IN PSB-VVER FACILITY

Co-ordinators: A. Del Nevo, M. Adorni, F. D'Auria (UNIPI)

Participating Organizations and Authors:

EREC (Russia): O.I. Melikhov, I.V. Elkin Gidropress - 1 (Russia): V.I. Schekoldin, M.O. Zakutaev Gidropress - 2 (Russia): S.I. Zaitsev NRI (Czech Republic): M. Benčík

Pisa, April 2009

DIMNP NT 638(08) Rev. 2

OECD/NEA PSB-VVER Project

CONCLUSIVE REMARKS

Specific outcomes from the analyses.

- > All codes runs predict the primary pressure trend with satisfactory results
- The maximum cladding temperature is overestimated (posttest) with the exception of the ATHLET simulation that highlighted an excellent accuracy
- The primary mass inventories predicted resulted in general lower than the experimental (indirect) measure

Outcomes from the application of the FFTBM (quantification of the accuracy) are:

- The average accuracy of primary pressure is < 0.1 or very close to this threshold</p>
- All code simulations showed a "very good" prediction of the experiment (AAtot < 0.4) or a "good" prediction (0.4<AAtot<0.5)</p>

The benchmarking activity and the availability of the experimental data brought to the following technological advancement.

- The TEST 5a, executed in the largest and most qualified ITF currently available for <u>VVER-1000 type reactors</u>, represents an enlargement of the "VVER code validation matrix"
- The benchmark is also an enlargement of the validation activity for the TH-SYS codes. The comparison of western and eastern computer codes represent a further valuable achievement

FUTURE ACTIVITIES

Next Int. benchmarks in which GRNSPG/UNIPI is involved

- > OECD ISP ATLAS
- ➢ OECD PKL-2
- ➢ IAEA ISCP MASLWR