Evolving the ATHENA Model of a LOCA Analysis for the Generation IV Gas-cooled Fast Reactor

Ryan Winningham

The Ohio State University

August 15, 2005

Mentor: Theron Marshall Ph.D.

Presentation Outline

- Overview of RELAP5/ATHENA GFR model
- Outline of Research Tasks
- Completed Work
- Work in Progress
- Future Work
- Questions

Generation IV Helium Gas-Cooled Fast Reactor

- The Gas-Cooled Fast Reactor (GFR) is one of six Generation IV designs
- The 600MW_{th} GFR uses a direct-cycle helium turbine for electricity generation, or can optionally use its process heat for thermochemical production of hydrogen due to the 850°C outlet temperature
- Through the combination of a fast spectrum and full recycle of actinides, the GFR minimizes the production of long-lived radioactive waste.

RELAP5/ATHENA GFR Core Layout

- Three radial core sections (Inner Ring, Middle Ring, Outer Ring)
- Five axial core regions per ring

Fuel Design

- The GFR prismatic fuel block contains fuel material dispersed in a SiC matrix
- Same unit cell methodology that is used in VHTR thermal analysis

Hydrodynamic Volumes and Heat Structures

Outline of Research Tasks

- Task 1 Development of a hot channel
- Task 2 Radial and axial flux distribution
- Task 3 Inlet plenum orificing
- Task 4 SiC thermal conductivity investigation
- Task 5 LOCA transient / Containment modeling
- Task 6 GFR core modeling in FLUENT

Development of a Hot Channel

- Two tasks for different needs
 - Hot channel as a heat structure (fuel temperature monitoring)
 - Hot channel as a hydrodynamic volume and heat structure (coolant property monitoring – used for stability analysis, FLUENT comparison)

Hot Channel as a Heat Structure

- Hot channel heat structure added to inner core ring
- The heat structure represents the equivalent annulus of fuel for one coolant channel
- There are 637 coolant channels in the inner core ring (7 assemblies, 91 coolant channels each)
- No impact on inner ring coolant temperatures

Hot channel as a Hydrodynamic Volume and Heat Structure

- New hydrodynamic volume added to core geometry to represent a single coolant channel
 - Removed one channel from inner ring
- Heat structure added to the single hot channel
- Provides fuel and coolant property data for the hot channel

Radial and Axial Flux Distribution

- 5 Axial increments
 - 1.25 peak-ave power ratio (chopped cosine)
- 3 (+1 Hot Channel) Radial increments
 - 1.5 peak-ave power ratio (chopped cosine)
 - 1.5 peak is placed in the hot channel

Results of Core Power Distribution

Axial Temperature Distributions

Task 2

Inlet Plenum Orificing

- Inlet plenum orificing is necessary in order to meet GFR maximum fuel temperature design specifications
 - 1450 °C normal operation
 - 1650 °C transient

			Mass	
			Flow rate	% of total
	% Constriction	Flow area (m ²)	(kg/sec)	flow
Inner Ring (7)	0.0%	0.1456	43.04	13.2%
Middle Ring (30)	52.0%	0.2996	140.4	43.3%
Outer Ring (90)	85.5%	0.2714	141.9	43.6%

Results of Inlet Plenum Orificing

Axial Temperature Distributions

Task 3

Impacts of Inlet Plenum Orificing

- Increase in core pressure drop from 14 kPa to 73 kPa
- Increased pumping power from 1.0 MW to 5.5 MW (0.9% thermal power)
- Orificing optimized for end of life core fuel temperatures (high peaking)
 - adjustable bypass flow or fresh fuel flux shaping necessary at beginning of life core

SiC Thermal Conductivity Investigation

- SiC thermal conductivity drops by ¹/₂ -¹/₃ with radiation exposure
- The change in thermal conductivity can increase fuel temperatures by as much as 150 °C (conductivity lowered by 1/3)
- With GFR fast flux ~10¹⁵ n/cm²-sec, these effects may be see just weeks from startup

D.J. Senor et al. | Journal of Nuclear Materials 317 (2003) 145-159

Task 4

LOCA Transient

 The Reactor Cavity Cooling System (RCCS) is a passive means of heat removal that mitigates core damage during a Loss of Coolant Accident (LOCA)

Task 5

RELAP5/ATHENA RCCS Model

- This is the same RELAP5/ATHENA model of the RCCS that is used in the VHTR
- Air at 27°C enters the inlet plenum (955)
- Then flows down the downcomer (960) attached to the containment wall
- Then up the riser channels (970) and discharged to the upper plenum (975)

Containment Backpressure

- The heat removal capacity of the RCCS is dependent on the containment pressure (air density)
- 1.2 MPa Containment pressure was sufficient to passively cool the core and prevent fuel failure before the addition of the hot channel and radialaxial power distributions
- 1.8 MPa is now necessary to meet GFR maximum fuel temperature design specifications (1650 °C transient)

RCCS Performance (Old Containment)

Hot Channel Fuel Temperatures

Task 5

New Containment Model

- Used to investigate heat removal by natural circulation in containment
- Containment modeled as two concentric annuli
- Loop flowrates will be based off FLUENT modeling results

New Containment Model (Preliminary Results)

- Possible to lower containment pressure from 1.8MPa to 1.4MPa and still achieve 1650 °C transient depressurization design parameter
- Shows natural circulation in containment and the core
- Future Work
 - FLUENT benchmark of containment
 - Adjustment of containment size
 - Investigate flow instabilities

RCCS Performance (Preliminary Results)

Hot Channel Fuel Temperatures (New Containment)

GFR Core Modeling in FLUENT

- Created 3 FLUENT geometries to investigate core flow under natural circulation conditions.
 - Single coolant channel
 - 3 channels with lower plenum (inlet)
 - 3 channels with lower and upper plenum
- Benchmarked geometries against RELAP5/ATHENA GFR hydrodynamic hot channel
- Currently working on natural circulation flow and viscosity induced flow starvation.

Future Work

- FLUENT modeling of Containment/RCCS decay heat removal for LOCA
- Update core design to align with the U.S./French I-NERI GFR concept (2400MW_{th})

Questions?

References

- Theron Marshall, Kevan Weaver, and Cliff Davis, "IMPLICATIONS OF PASSIVE DECAY HEAT REMOVAL DURING A LOCA WITH A GAS-COOLED FAST REACTOR", Proceedings of ICAPP '05, Seoul, KOREA, May, 2005
- D.J. Senor, G.E. Youngblood, L.R. Greenwood, D.V. Archer, D.L. Alexander, M.C. Chen, G.A. Newsome, "Defect structure and evolution in silicon carbide irradiated to 1 dpa-SiC at 1100 C", Journal of Nuclear Materials 317 (2003) 145–159
- R. J. PRICE, "THERMAL CONDUCTIVITY OF NEUTRON-IRRADIATED PYROLYTIC β-SILICON CARBIDE", Journal of Nuclear Materials 46 (1973) 268-272

Acknowledgements

Larry Zirker, Kevan Weaver, Theron Marshall (INL) Richard Christensen, Audeen Fentiman, Brian Hajek (OSU)

Supplemental Slides

Design Specs

Reactor Design Parameter	Conceptual Data	
Power plant	600 MW _{th}	
Net efficiency	48% (helium, direct cycle)	
Coolant pressure	9 MPa	
Outlet coolant temperature	850°C (helium, direct cycle)	
Inlet coolant temperature	490°C (helium, direct cycle)	
Nominal flow and velocity	330 kg/s and 40 m/s	
Core volume	10.9 m ³ (H/D ~1.7/2.9 m)	
Core pressure drop	~ 0.04 MPa	
Volume fraction (%) Fuel/Gas/SiC	50/40/10	
Average power density	55 MW/m ³	
Reference fuel compound	(U, Pu)C/SiC (50/50%) 17% Pu	
Breeding/Burning performances	Self-Breeder	
Maximum fuel temperature	1174°C (normal operation) < 1650°C (depressurization)	
Fuel management	multi-recycling	
Primary vessel diameter	< 7 m	

