daho National Laboratory

Implementation of Molten Salt Properties into RELAP5-3D/ATHENA

C. B. Davis

September 7-9, 2005

Outline

- Introduction
- Derivation of fluid properties
- Verification
- Implementation
- Conclusions

Introduction

- Molten salts are being considered as coolants for the Next Generation Nuclear Plant (NGNP) in both the reactor and the heat transport loop
 - The salt is expected to remain liquid
- Consequently, four coolant salts were incorporated into ATHENA as working fluids
 - LiF-BeF₂ (66% 34%) (Flibe)
 - NaBF₄-NaF (92% 8%)
 - LiF-NaF-KF (46.5% 11.5% 42%) (Flinak)
 - NaF-ZrF₄ (50% 50%)

Introduction (cont'd)

- The salts were implemented using a simplified equation of state
 - Liquid density is a function of temperature and pressure based on correlations from ORNL
 - Liquid heat capacity is constant
 - Vapor is assumed to have the same composition as the liquid and is treated as a perfect gas
- Simplified equation of state is considered adequate for liquid properties, but two-phase, vapor, and supercritical conditions should be avoided

Liquid thermodynamic properties

- Density is a linear function of temperature and depends slightly on pressure
- The isothermal compressibility is given by a correlation

$$\rho_{\rm T} = A_{\rm D} ({\rm T} - 273.15) + B_{\rm D}$$
$$\rho = \rho_{\rm T} [1 + \kappa ({\rm P} - {\rm P}_0)]$$
$$\kappa = A_{\kappa} e^{B_{\kappa} {\rm T}}$$

Liquid thermodynamic properties (cont'd)

 The coefficient of thermal expansion is calculated from the density and isothermal compressibility equations

$$\beta = -\left(\frac{A_{D}}{\rho_{T}} + \frac{B_{\kappa}\kappa(P - P_{0})}{1 + \kappa(P - P_{0})}\right)$$

Liquid thermodynamic properties (cont'd)

- The change in specific internal energy from a reference state to a given P and T is calculated as the sum of two steps
 - A reversible, isothermal change in pressure from the reference pressure P₀
 - A reversible, isobaric change in temperature from the reference temperature, T₀

$$\Delta u_1 = Q - W = -T \int_{P_0}^{P} v \beta dP - \int_{P_0}^{P} - v \kappa P dP$$

$$\Delta u_1 \approx -T \overline{v} \overline{\beta} (P - P_0) + 0.5 \overline{v} \overline{\kappa} (P^2 - {P_0}^2)$$

 $\Delta u_{2} = c_{P}(T - T_{0}) - P(v - v_{1})$

laho National Laboratory

Liquid thermodynamic properties (cont'd)

- The change in specific entropy is also calculated as the sum of two steps
 - A reversible, isothermal change in pressure from the reference pressure P_0
 - A reversible, isobaric change in temperature from the reference temperature, T₀

$$\Delta s_1 = -\int_{P_0}^{P} \beta v dP \approx -\overline{\beta} \overline{v} (P - P_0)$$

$$\Delta s_{2} = \int_{T_{0}}^{T} \frac{c_{P}}{T} dT = c_{P} \ln(T/T_{o})$$

Constants for liquid thermodynamic properties

Salt	Composition	T _{melt}	A _D	B _D	A _κ	B _κ	C _P
	(mole fraction)	(K)	(kg/m^3-K)	(kg/m^3)	(1/Pa)	(1/K)	(J/kg-
							K)
1	LiF-BeF ₂	731.15	-0.4884	2279.7	2.3E-11	0.001	2386
	(0.66, 0.34)						
2	NaBF ₄ -NaF	658.15	-0.7110	2252.1	9.0E-11	0.0016	1507
	(0.92, 0.08)						
3	LiF-NaF-KF	727.15	-0.73	2530	NA	NA	1884
	(0.465, 0.115, 0.42)						
4	NaF-ZrF ₄	783.15	-0.93	3790	NA	NA	1151
	(0.50, 0.50)						

Saturation line properties

- The saturation line was determined from ORNL correlations
 - Not available for two salts
- The triple point temperature was set to the melting temperature
- The critical point temperature was estimated from empirical relations given by Bird et al. (1960)

$$P_{sat} = 133.32 \times 10^{(A_{sat} - B_{sat}/T)}$$

$$T_{\rm crit} = \frac{1.15}{0.77} T_{\rm boil} = 1.494 T_{\rm boi}$$

Liquid transport properties

- Dynamic viscosity and surface tension were based on correlations from ORNL
 - Correlations for surface tension were not available for two salts
- Thermal conductivity was constant

$$\mu = A_{\mu} e^{(B_{\mu}/T)}$$

$$\sigma = A_{\sigma} (T - 273.15) + B_{\sigma}$$

Constants for liquid transport properties

Salt	Composition	A _µ	B_{μ}	k	A _σ	B_{σ}
		(Pa-s)	(K)	(W/m-K)	(N/m-K)	(N/m)
1	LiF-BeF ₂	1.16E-4	3755	1.1	-1.2E-4	0.260
2	NaBF ₄ -NaF	8.77E-5	2240	0.5	-7.5E-5	0.130
3	LiF-NaF-KF	4.0E-5	4170	0.8	NA	NA
4	NaF-ZrF ₄	7.09E-5	4168	1	NA	NA

Vapor properties were estimated

- Thermodynamic properties are based on perfect gas relationships
 - Specific internal energy is a function of temperature alone
 - Constant specific heat capacity
 - Transport properties are based on Chapman-Enskog theory of gases at low density (Bird et al. 1960)
- The composition of the vapor is assumed to be the same as the liquid

The calculated fluid properties were verified

- For Flibe, the thermodynamic properties were verified against a soft-sphere model developed by Chen et al. (1992) and Moore (2000)
- The transport properties were verified by hand calculations
- The thermodynamic and transport properties for the other salts were also verified by hand calculations

The results from the simplified and softsphere model agreed reasonably well for liquid

The comparisons were not as good for vapor

The molten salts were implemented into RELAP5-3D/ATHENA

- The salts can be accessed by selecting ms1, ms2, ms3, or ms4 on the Hydrodynamic System Control Cards
- The fluid properties are contained in the tpfms1, tpfms2, tpfms3, and tpfms4 files
- The molten salts were implemented using a new format, in which the transport properties are contained within the 'tpf' files, rather than in the old format, in which they are contained in subroutines
- This new format allows a new salt (or other fluid) to be implemented without making internal changes to the code

Conclusions

- Four salts were implemented into RELAP5-3D/ATHENA to support analysis of the NGNP
- The salts were implemented using a simplified equation of state
 - The simplified model could be easily modified to represent any fluid where the liquid phase is of primary interest
 - Since all the properties are contained within the 'tpf' file, no internal modifications would be required in the code

Conclusions (cont'd)

- Thermodynamic properties for Flibe were verified through comparisons with a detailed equation of state based on a soft-sphere model
 - The comparisons were in reasonable agreement for liquid
 - The results were not nearly as good for vapor
- The simplified model is considered acceptably accurate for analysis of the NGNP, which is expected to remain single-phase liquid
 - The model is not expected to be accurate for boiling, single-phase vapor, or supercritical applications

Conclusions (cont'd)

- An evaluation should be performed to determine the applicability of the code's heat transfer and friction factor correlations with molten salts
- Additional details are provided in INEEL/EXT-05-02658

