RELAP5-3D Conversion to
Fortran 90

RELAPS International Users
Seminar

Dr. George L. Mesina

September 7-9 , 2005

fd
? ldaho National Laboratory

Outline

 Purpose

 High-level Task Description
 Progress

« Conversion methodology

e Measurements

_
*

What Users Want from Conversion

« Don’t change my answers!
— Horror stories from other code conversions
— Elaborate testing prevents changes
« Don’t cripple my feature!
— Parallel, vector, PVM, restart, GUI, PYGI, etc.
 Improve RELAP5-3D somehow.

“i |daho National Luboratori

Improvements from Conversion

* Increase machine independence.
— Use Fortran 90 intrinsics, not MILSPEC.

Eliminate memory restrictions.
— Replace FA-array with allocatable arrays.

Longevity.

— Replace any Fortran 66 & 77 constructs that may
be illegal in future versions of Fortran.

Modernization.
— Convert to derived types (proto-object-oriented).
— Use whole array operations.

—
S (dcho Nationd Laboratory

Improvements from Conversion

« Coding and data structure simplified for readability
and understandability

— Less time required for code development
— Reduced debugging time
— Reduced cost for maintenance

« New developers will learn the code faster

— More modern language, programming constructs,
and programming style

. Idaho National Laboratory

Specific Goals of Fortran 90 Task

 Replace obsolete coding structures.
« Replace COMDECKS with Fortran 90 Modules.
 Replace “internal FA-Files” with derived types.
o Simplify the labyrinthine data structure.

— Replace index variables with ordinals.

— Replace LOCF and indexing-pointer method with
Fortran 90 (real) pointers.

 Replace MACH* with machine-independent, Fortran
90 intrinsic functions.

 Ultimately, eliminate FA array and FTB.

—

\EHL Idaho National Laboratory

High Level Description: Order

« Order of conversion

— By functional groupings
1. Transient routines
2. /O routines
3. Environmental routines
4, Others

— By internal FA Files with a functional group
— 47 of them

— By “calling trees” within an FA file in leaf to root
order.

i

“i |daho National Luboratori

High Level Description: Function

Start-up RELAPS

Post-proc

INPUTD TRNCTL \
v v v v
R-Level | |I-Level TRNSET | |TRAN
~—_ *
R-output | |Init-PVM TRNFIN RGUI

Transient routines
of current F90 Task

High Level Description:
FA Categories

Categories of FA files.

1.
2.
3.

Standard — Single fixed stride through memory

Interwoven — 2+ fixed strides through memory

Complex — some characteristics are:

 Non-fixed strides

« Referenced by direct FA access,
 Multiple equivalence for single FA index
Removable — No longer used.

. Idaho National Laboratory

High Level Description: Conversion

e To convert an FA file
1. Develop conversion tools to automate conversion.
2. Create module.
3. Convert all subroutines that use the FA file
3a.For a given subroutine

— Convert subroutine with tools.

— Test that code performance is unaffected.

— Make manual modifications as needed.

« Repeat Step 3a until all subroutines of the FA
file are successfully converted.

g
Hli Idaho National Laboratory

Progress (as of Version 2.5.1)

3 standard (category 1) FA files have been fully
converted.

FA file |[Module created Converted
Name Subpgms |# lines | Subpgms | # lines
VOLDAT |VOLMOD 5 1093 158 12216
JUNDAT |JUNMOD 5 721 101 7220
LPDAT |LPDMOD 5 321 96 2407
Total * 15 2135 355 * 19833

* Each separate conversion of a subroutine is counted.

Conversion Order of an FA File Subtree

TSETSL STGODU RSTIMG FILDMP

routlnes

...................

Reason for “Leaves to Root” Order

« When converting the FIRST subroutine, all the most-
current datais in the FA-array.

 Must upload (copy) FA-data to module.
— Upload performed first action at top of routine.

e Calculations in converted subroutine are performed
In derived type arrays.

— The most-current data is now in the module.

« Must download module data to FA-array, last action
before returning.

 What would happen if the converted subroutine
called an unconverted subroutine?

~—

\EHL)Iduho National Laboratory

Some Conversion Rules

1. No subroutine can be converted until all the
subroutines it calls are converted.

2. Subroutines called from a converted subroutine
must NOT perform data uploads or downloads.

« What would happen if one did an upload from
FA to module?

3. Control data transfers from the calling routine.

 Important for subroutines called from both
converted and unconverted subroutines.

. Idaho National Laboratory

Method to Convert a Subroutine

1. Pre-process with conversion tools
2. Convert to derived types with conversion tools
3. Post-process the converted file

« Fix compiler errors

« Run small test set

« Debug runtime errors

 Debug differences in calculations

Hli |daho National Lubnrutori

Pre-processing a Subroutine

1. Place the “use module” statement.
2. Place the transfer statements at start and return.
« Upload (start), download (return), and controls.
3. Create ordinals for indexing derived type arrays.
4. Split indices of multi-D, FA-file arrays in two.
di(ivpl) = di(iv) BECOMES di(iv+l) = dl(iv)
5. Turn array references in do-loop limits into scalars.

6. Declare and create assignhment statements for the
variables in 3, 4, and 5.

7. Apply some automated RELAPS style rules.

—

Mlduho National Laboratory

“Derived Type Processing” a Subroutine

« “Single-index” arrays, such as pressure, become
derived type scalar attributes.

p(iv) ==> vim(miv)%p
— Use ordinal index, miv, NOT FA-array index, iv.

« Convert multi-index arrays to derived type attribute
vectors.

di(ivpl) ==> dl(iv+l) ==> vim(miv)%dI(2)

 Derived types extend statement length, stay within
column 72 via continuation.

~—

Hli ldaho National Laboratory

Post-processing a Subroutine

« Common compiler errors
— Undeclared, newly created variables

— Arrays with array subscripts are mishandled by
the converter.

e Some runtime errors

— A new variable created in an if-branch is
undefined In the else-branch.

— Multiple returns. Convert to single exit point.

— Failure to split an index (that needs splitting)
prior to conversion.

~—

.. |daho National Laboratory

Testing

« Tested on small set of standard problems first.
— Make sure it still does what it is supposed to do.
— Check that it does not cause failures elsewhere.
e Tested on all “normal test problems”
— Whenever a small subtree is completed.
— At least once every 10 conversions.
« FA-fileis considered FULLY CONVERTED when

1. All test cases produce identical output to the
unconverted code.

2. “All” 1ts transfers have been commented out.

~—

Mlduhu National Laboratory

Transient Conversion Information

47 internal FA-files
— 1108 = Number of includes in all subroutines
— 849 = Number of includes in all transient subs
 Fully converted FA-files
— 158 = #includes of VOLDAT by transient subs
— 101 =#includes of JUNDAT by transient subs
— 96 =#includes of LPDAT by transient subs
« Progress on “Transient FA-conversion” task
— 42% complete = (158+101+96) / 849

—
S (dcho Nationd Laboratory

	RELAP5-3D Conversion to Fortran 90
	Outline
	What Users Want from Conversion
	Improvements from Conversion
	Improvements from Conversion
	Specific Goals of Fortran 90 Task
	High Level Description: Order
	High Level Description: Function
	High Level Description:�FA Categories
	High Level Description: Conversion
	Progress (as of Version 2.5.1)
	Conversion Order of an FA File Subtree
	Reason for “Leaves to Root” Order
	Some Conversion Rules
	Method to Convert a Subroutine
	Pre-processing a Subroutine
	“Derived Type Processing” a Subroutine
	Post-processing a Subroutine
	Testing
	Transient Conversion Information

