
September 7-9 , 2005

Dr. George L. Mesina

RELAP5-3D Conversion to
Fortran 90
RELAP5 International Users
Seminar

Outline

• Purpose
• High-level Task Description
• Progress
• Conversion methodology
• Measurements

What Users Want from Conversion

• Don’t change my answers!
– Horror stories from other code conversions
– Elaborate testing prevents changes

• Don’t cripple my feature!
– Parallel, vector, PVM, restart, GUI, PYGI, etc.

• Improve RELAP5-3D somehow.

Improvements from Conversion

• Increase machine independence.
– Use Fortran 90 intrinsics, not MILSPEC.

• Eliminate memory restrictions.
– Replace FA-array with allocatable arrays.

• Longevity.
– Replace any Fortran 66 & 77 constructs that may

be illegal in future versions of Fortran.
• Modernization.

– Convert to derived types (proto-object-oriented).
– Use whole array operations.

Improvements from Conversion

• Coding and data structure simplified for readability
and understandability
– Less time required for code development
– Reduced debugging time
– Reduced cost for maintenance

• New developers will learn the code faster
– More modern language, programming constructs,

and programming style

Specific Goals of Fortran 90 Task
• Replace obsolete coding structures.
• Replace COMDECKS with Fortran 90 Modules.
• Replace “internal FA-Files” with derived types.
• Simplify the labyrinthine data structure.

– Replace index variables with ordinals.
– Replace LOCF and indexing-pointer method with

Fortran 90 (real) pointers.
• Replace MACH* with machine-independent, Fortran

90 intrinsic functions.
• Ultimately, eliminate FA array and FTB.

High Level Description: Order
• Order of conversion

– By functional groupings
1. Transient routines
2. I/O routines
3. Environmental routines
4. Others

– By internal FA Files with a functional group
– 47 of them

– By “calling trees” within an FA file in leaf to root
order.

High Level Description: Function

RELAP5Start-up

INPUTD TRNCTL

Post-proc

R-Level I-Level

R-output Init-PVM

TRANTRNSET

RGUITRNFIN

Transient routines
of current F90 Task

High Level Description:
FA Categories

• Categories of FA files.
1. Standard – Single fixed stride through memory
2. Interwoven – 2+ fixed strides through memory
3. Complex – some characteristics are:

• Non-fixed strides
• Referenced by direct FA access,
• Multiple equivalence for single FA index

4. Removable – No longer used.

High Level Description: Conversion
• To convert an FA file

1. Develop conversion tools to automate conversion.
2. Create module.
3. Convert all subroutines that use the FA file

3a.For a given subroutine
– Convert subroutine with tools.
– Test that code performance is unaffected.
– Make manual modifications as needed.

• Repeat Step 3a until all subroutines of the FA
file are successfully converted.

Progress (as of Version 2.5.1)
3 standard (category 1) FA files have been fully
converted.

* Each separate conversion of a subroutine is counted.

Module created Converted FA file
Name Subpgms # lines Subpgms # lines

VOLDAT VOLMOD 5 1093 158 12216
JUNDAT JUNMOD 5 721 101 7220
LPDAT LPDMOD 5 321 96 2407
Total * 15 2135 355 * 19833

Conversion Order of an FA File Subtree

TRNSET

FTB
routines

TSETSL STGODU RSTIMG FILDMP

FTB
routines

PMINVD BPARAM MCHECK

1

23

4

Leaves

Subtree rootOrder is:
leaves to root

Reason for “Leaves to Root” Order

• When converting the FIRST subroutine, all the most-
current data is in the FA-array.

• Must upload (copy) FA-data to module.
– Upload performed first action at top of routine.

• Calculations in converted subroutine are performed
in derived type arrays.
– The most-current data is now in the module.

• Must download module data to FA-array, last action
before returning.

• What would happen if the converted subroutine
called an unconverted subroutine?

Some Conversion Rules

1. No subroutine can be converted until all the
subroutines it calls are converted.

2. Subroutines called from a converted subroutine
must NOT perform data uploads or downloads.
• What would happen if one did an upload from

FA to module?
3. Control data transfers from the calling routine.

• Important for subroutines called from both
converted and unconverted subroutines.

Method to Convert a Subroutine

1. Pre-process with conversion tools
2. Convert to derived types with conversion tools
3. Post-process the converted file

• Fix compiler errors
• Run small test set
• Debug runtime errors
• Debug differences in calculations

Pre-processing a Subroutine
1. Place the “use module” statement.
2. Place the transfer statements at start and return.

• Upload (start), download (return), and controls.
3. Create ordinals for indexing derived type arrays.
4. Split indices of multi-D, FA-file arrays in two.

dl(ivp1) = dl(iv) BECOMES dl(iv+1) = dl(iv)
5. Turn array references in do-loop limits into scalars.
6. Declare and create assignment statements for the

variables in 3, 4, and 5.
7. Apply some automated RELAP5 style rules.

“Derived Type Processing” a Subroutine

• “Single-index” arrays, such as pressure, become
derived type scalar attributes.
p(iv) ==> vlm(miv)%p
– Use ordinal index, miv, NOT FA-array index, iv.

• Convert multi-index arrays to derived type attribute
vectors.
dl(ivp1) ==> dl(iv+1) ==> vlm(miv)%dl(2)

• Derived types extend statement length, stay within
column 72 via continuation.

Post-processing a Subroutine
• Common compiler errors

– Undeclared, newly created variables
– Arrays with array subscripts are mishandled by

the converter.
• Some runtime errors

– A new variable created in an if-branch is
undefined in the else-branch.

– Multiple returns. Convert to single exit point.
– Failure to split an index (that needs splitting)

prior to conversion.

Testing
• Tested on small set of standard problems first.

– Make sure it still does what it is supposed to do.
– Check that it does not cause failures elsewhere.

• Tested on all “normal test problems”
– Whenever a small subtree is completed.
– At least once every 10 conversions.

• FA-file is considered FULLY CONVERTED when
1. All test cases produce identical output to the

unconverted code.
2. “All” its transfers have been commented out.

Transient Conversion Information
• 47 internal FA-files

– 1108 = Number of includes in all subroutines
– 849 = Number of includes in all transient subs

• Fully converted FA-files
– 158 = # includes of VOLDAT by transient subs
– 101 = # includes of JUNDAT by transient subs
– 96 = # includes of LPDAT by transient subs

• Progress on “Transient FA-conversion” task
– 42% complete = (158+101+96) / 849

	RELAP5-3D Conversion to Fortran 90
	Outline
	What Users Want from Conversion
	Improvements from Conversion
	Improvements from Conversion
	Specific Goals of Fortran 90 Task
	High Level Description: Order
	High Level Description: Function
	High Level Description:�FA Categories
	High Level Description: Conversion
	Progress (as of Version 2.5.1)
	Conversion Order of an FA File Subtree
	Reason for “Leaves to Root” Order
	Some Conversion Rules
	Method to Convert a Subroutine
	Pre-processing a Subroutine
	“Derived Type Processing” a Subroutine
	Post-processing a Subroutine
	Testing
	Transient Conversion Information

