

RELAP5-3D Development & Application Status Presented by

Gary W. Johnsen

Idaho National Engineering & Environmental Laboratory Idaho Falls, Idaho 83415

2001 RELAP5 International User's Seminar September 5-7, 2001 Sun Valley, Idaho

Outline

- Overview of development and application activities
- Selected reviews
 - Pb-Bi Reactor Studies
 - ATHENA/RELAP5-3D
 Validation
- Future activities

Development Activities

Item	Objective
PVM Executive for Coupling*	Control the startup,
	advancement and
	termination of tow or more
	coupled codes
64 Bit Upgrade	Allow for 64 bit integers
Further Parallelization	Complete conversion to
	OpenMP directives in 3D and
	kinetics routines
Level Position in a Stack	Add output to indicate level
	position in a vertical stack of
	volumes
FORTRAN 90 Bit Packing	Convert archaic bit packing
	to FORTRAN 90 standard

* Presentation in Seminar

Development Activities (cont'd)

Item	Objective
Critical Flow Anomaly*	Resolve discontinuity near
	saturation line
Stack Fill Temperature	Resolve unphysical
Anomaly	temperatures while filling a
	vertical stack
RGUI Enhancement*	Add heat slab data
	visualization
PYGMALION*	Refurbish
Couple RELAP5-3D to	Application to HTGR
Fluent*	
RELAP5-3DK*	Assist INER in developing an
	Appendix K version

* Presentation in Seminar

Applications at INEEL

Project	Objective
International Nuclear Safety	Development, assessment,
Program*	and training for VVER and
	RBMK applications
Fusion Safety	Assessment of
	ATHENA/RELAP5-3D
Advanced designs	Lead-Bismuth, Pebble Bed
	design studies
ATR*	Safety margin assessments,
	design studies
RELAP5/RT*	Assist DS&S in simulator
	upgrades
Municipal Steam Supply	Design and transient studies
Systems	

* Presentation in Seminar

Pb-Bi Reactor Studies*

- ATHENA calculations were performed to investigate the transient response of three plant options:
 - Natural circulation primary, water secondary
 - Forced circulation primary, water secondary
 - Natural circulation primary, helium secondary
- Transients were analyzed to evaluate plant operability and determine margins to safety limits
- * Work performed by Cliff Davis

Pb-Bi Reactor Design

Transients to be analyzed

- Operability
 - Step change in load
 - Plant startup
- Accidents
 - Loss of heat sink with scram
 - Control rod ejection without scram
 - Large rupture of secondary outlet piping without scram
 - Heat exchanger tube rupture without scram
 - Primary coolant pump trip without scram
 - Loss of feedwater heating without scram

The plant is not sensitive to a 10% step change in load

- Step decrease in secondary pressure at 10 s
- Secondary inlet flow assumed constant
- Evaluation of margin to scram, not load following capability

Scram is required to meet cladding thermal limit following control rod ejection

• 0.5\$ step at 10 s representing ejection of average control rod (unlikely with fertilefree fuel)

- No scram
- Beyond design basis
- Scram must occur within 2 s with natural circulation
- More margin exists with forced circulation

The pump should be tripped following a loss of heat sink

The plant is not sensitive to a large rupture of the secondary outlet piping

- $Q_0 = 650 \text{ MW}$
- No scram
- All heat exchangers blow down, with no flow restrictors
- Power increases quickly with natural circulation, delayed until cold water reaches core with forced circulation
- Cladding temperatures remain below thermal limit

Pb-Bi Design Preliminary Conclusions

- The plant demonstrates good operating characteristics
- The most limiting design-basis transient so far is the loss of heat sink
- Scram is required for the loss of heat sink and control rod ejection accidents
- The transient responses of all three plant configurations are acceptable
 - Reactor coolant pumps should be tripped or run back following a loss of heat sink
 - Reactor scram is almost not required for a control rod ejection accident with forced circulation

ATHENA/RELAP5-3D Validation For Fusion Reactor Studies*

Japanese Ingress of Coolant Experiment (ICE)

- Scaled experimental facility simulating a water cooled tokamak reactor
- Purpose of facility
 - Measure pressure, choked flow and wall heat transfer during loss-of-coolant accidents (LOCAs) into superheated evacuated vessels
 - Validate capabilities of fluid flow codes used by the fusion community for safety assessment of reactor designs ATHENA, MELCOR, CATHARE, TRAC, INTRA, CONSEN

*Prepared by Brad Merrill

Japanese Ingress of Coolant Event (ICE) Experiment

RELAP5-3D[©]

INEEL

ATHENA/RELAP5 3D ICE EXPERIMENT MODEL Fluid Cell Placement

Boiler r-Θ-z - 3 x 6 x 3 (60°)

Plasma chamber heat r- Θ -z - 4 x 8 x 7 (45°)

Divertor region divided into five cells

Vacuum vessel r- Θ -z - 3 x 4 x 5 (90°)

Suppression tank r- Θ -z - 2 x 1 x 8 (360°)

Nitrogen system, injector lines, relief pipes, 1D components **RELAP5-3D**[©]

Post-test Conclusions for ATHENA/RELAP5-3D Comparison

ATHENA/RELAP-3D compared well with ICE test data provided

- homogenous flow velocity model (equal vapor and liquid) was employed => inter-phase drag model needs to be examined
- post-CHF heat transfer correlations were enhanced by a factor of 7 to simulate droplet impingement => heat transfer models need to be added

Future Activities*

Task	Objective
Multi-Thread with PVM	Permit execution of RELAP5-3D
	in parallel when coupled to other
	codes using the PVM
	methodology
Improve Air Appearance	Modify logic to avoid repeat of
Logic in RELAP5-3D	time step
Allow Reflood on Left or	Generalize reflood model for
Right of Heat Slab	different geometries
FORTRAN 90: fixed	Convert fixed common blocks to
commons, volume block	FORTRAN 90 modules and
	convert the control volume block
	to a FORTRAN 90 module
Resolve BPLU Zero	Find and correct root cause for
Bandwidth Problem	anomalous zero bandwidth
	failures
RGUI Development	Model Builder/Editor

*Based on projected funding

