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Outline
• Introduction to recent SCDAP analyses
• Analyses of potential for in-vessel retention (IVR)

– Modeling approach
– Typical results

• Vessel lower head model improvements (in progress)
• Summary
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Wide Range of Analyses Completed
• Station blackout analyses supporting

– NRC severe accident management programs
– Resolution of direct containment heating issue

• Fuel pin failure timing analyses (PWRs and BWRs)
• Analyses of potential for SGTR
• Electrosleeving analyses for SG life extension
• Vessel lower head analyses supporting

– AP600 design certification relative to external reactor vessel
cooling (ERVC)

– Assessment of IVR potential
– Addition of corium-to-vessel gap cooling (in progress)
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Minimal T-H Requirements for IVR Analyses
• Sink
• Injection source
• Simulation of external boundary conditions

(Radiation, spray cooling, external flooding, CRD supply)
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Detailed IVR Model
for Lower Head
Thermal Response
without CRD

• 744 finite elements
with 800 nodes

• “Contact” elements
at all
corium/structural
interfaces

32448

1

97
65

417
449

128  96CL



Idaho National Engineering and Environmental Laboratory

601-GA50

• 753 finite elements
with 812 nodes

• “Contact” elements
at all
corium/structural
interfaces

Detailed IVR
Model for Lower
Head Thermal
Response with
CRD
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“Contact” Heat Transfer Assumed to be
Temperature Dependent

Solid interface (low conductance) if:

Molten interface (high conductance) if:

Transition interface (intermediate
conductance) if:
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Three Mechanisms Considered in IVR
External Crucible Cooling (ECC)
• ECC consists of heat transfer associated with

– Radiation from crucible/CRD surfaces to surroundings
– Spray cooling of external crucible/CRD surfaces
– Nucleate boiling at submerged crucible/CRD locations

• Code modification made to allow specification of
equivalent heat transfer coefficients using (user
defined) control variables

• Control variables developed to implement heat
transfer correlations at all affected nodes
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Radiation Heat Transfer Applied When
Sprays are Off
• Radiation heat transfer only applicable (at non-submerged

nodes) when sprays “off”

• Equivalent radiation heat transfer coefficient given by
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Spray Cooling Applied Above External Water Level

• Spray cooling only applicable for non-submerged nodes when
sprays “on”

• Crucible spray cooling estimated using Breen and Westwater film
boiling correlation
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Spray Cooling Applied Above External Water Level
(cont)

• CRD spray cooling estimated using Bromley film boiling
correlation

filmradecrdspraye hhh += −−−
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Spray Cooling Heat Transfer Limited by Flow
• Crucible/CRD spray cooling heat transfer cannot exceed

spray flow heat capacity
• Crucible/CRD equivalent heat transfer coefficient scaling

required for consistency with spray flow heat capacity
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• Nucleate boiling assumed for all submerged nodes
• Boiling heat transfer assumes

• Boiling for all CRD surfaces based on θ = 0°

Boiling Heat Transfer Applied Below
External Water Level
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External Water Level Based on ECC Conditions
• External water level as function of spray cooling flow

rates, spray cooling heat transfer, and boiling heat
transfer
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 IVR Results Dependent on Boundary
Conditions

• Wide range of boundary conditions considered
• Most significant conditions included

– Corium temperature at time of relocation
– Corium decay power density
– Spray cooling flow rates
– Corium/coolant interaction during relocation
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Structural Melting Sensitive to Initial Corium
Temperature
Initial corium temperature 2250 K Initial corium temperature 3000 K
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Spray Scaling Requirement Increases with
Initial Corium Temperature
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Key Conclusions From IVR Analyses

• Initial corium temperature significant relative to
prediction of structural melting

• Spray flows considered were too small relative to
external heat load

• CRD flows important for CRD integrity but ineffective
relative to corium cooling

• In-vessel injection inadequate for replenishing/
maintaining vessel water level

• Conclusions could change with addition of corium-to-
vessel gap cooling
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Addition of Corium-to-Vessel Gap Cooling
Significant SCDAP-3D Enhancement

• Evidence suggests presence of corium-to-vessel gap
– TMI-2 data
– JAERI ALPHA experiments
– KAERI LAVA tests

• Gap representation critical to accurate simulation of
vessel lower head thermal response

• SCDAP-3D will contain high fidelity heat transfer
model (not limited to simple CHF relationship used in
some codes)
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Configuration Needed for Corium-to-Vessel
Gap Cooling

• Two volume gap allowing
countercurrent cooling
flow

• Crossflow connections
incorporated in finite
element mesh

• Heat transfer correlations
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Development of Complete Boiling Curve
Anticipated
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Addition of Corium/Vessel Gap Does Not Alter
Existing “Contact” Modeling Approach
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Summary
• SCDAP-3D versatility demonstrated in completing

wide variety of analyses
• Results have addressed regulatory and safety issues
• Recent IVR analyses provide insights into corium

coolability (hence, reactor safety)
• SCDAP-3D modifications underway to add corium-to-

vessel gap cooling capabilities


