

Validation & Verification: Fluent/RELAP5-3D[©] Coupled Code

Richard Schultz William Wieselquist

> 2001 RELAP5 User's Seminar Sun Valley, ID September 2001

The Fluent RELAP5-3D Coupling..

- What we're doing
- Why we're doing it
- How we'll make sure it is OK
- Our future plans

Overall Perspective...

- DOE's Generation IV Roadmap effort is a part of national strategy to gain public acceptance of nuclear power, and to encourage vendors and utilities to consider nuclear power as an option again.
- The roadmap program has received nearly a hundred reactor plant designs to evaluate including water-cooled, gas-cooled, liquid-metal cooled and other concepts.
- With the process underway to winnow the concept number down to 6 or so, a parallel effort is underway to evaluate our infrastructure:
 - o Analytical tools
 - o Regulatory & licensing practices...etc.

Analytical Tools for Advanced Systems

- Further development is needed—particularly for working fluids other than water.
- Recent developments—particularly in the CFD world—need to be considered and used if advantageous.

The Idaho National Engineering and Environmental Laboratory

Fluent & RELAP5-3D Are Being Coupled to...

- Enable an entire system to be modeled using 1-D features of RELAP5
- While modeling some sections of systems in great detail using Fluent

Development Underway Using Gas-Cooled Reactors as Basis

- PBMR is focus
- Working fluid: helium
- Work to couple codes is ongoing by Walt Weaver. He will use PVM & same techniques described in papers by himself & Aumiller, et al.

Once Coupling Is Completed...

- Validation & Verfication^{*} will be used to:
 - Check that Fluent and RELAP5/ATHENA have been coupled properly
 - Examine the strengths and weaknesses of the coupled code
- Important features that will be examined:
 - Behavior at interfaces between Fluent and RELAP5/ATHENA
 - Using neutronics with Fluent
 - Modeling flow through packed beds

[&]quot;Verification" is solving the equations right while "validation" is solving the right equations.

A Portion of V&V Matrix

Experiment or Case	Working Fluid	Phenomena of Interest or Objective	PBMR Region of Interest	Reference
Turbulent flow in pipe section	Helium	Mesh coupling between Fluent & RELAP5	PBMR inlet pipe	Streeter, V., 1961
Turbulent flow in backward facing step with heat transfer	Air	 Mesh coupling between Fluent & RELAP5 Flow profiile calculated by Fluent 	PBMR inlet pipe and inlet plenum	Baughn, J. W., et al, 1984
<i>Neutronics-fluid Ineraction in core region(LWR)</i>	Water	RELAP5/ATHENA neutronics coupling with Fluent mesh	Core; although this data set is for geometry unlike PBMR,	Bovalini, R., et al, 2001 (used by permission of Y. Hassan)
Countercurrent two-phase flow	Water & SF ₆	 Mesh coupling between Fluent & RELAP5 Flow behavior calculated by Fluent 	Potential pipe break and countercurrent flow at break when not choked	Stewart, W. T., et al, 1992.
Flow through packed-bed	Air	Fluent's capability of calculating flow through portion of packed bed.	Core	Calis, H. P., et al, 2001.

Data (V&V Cases) Not Always Ideal

- German data (AVR & THTR at Uentrop-Schmehausen) not available to public
- Currently:
 - No neutronics-fluid interaction data for PBMR core—but Fluent can't model a packed-bed very well yet anyway.
 - Haven't found countercurrent flow data more applicable (for CFD code) than Stewart, et al, 1992
- Working fluid and scaling usually not desirable.

References

- Streeter, V. L., *Fluids Handbook,* McGraw-Hill, 1961.
- Baughn, J., M. A. Hoffman, R. K. Takahashi, and B. E. Launder, 1984, "Local Heat Transfer Downstream of an Abrupt Expansion in a Circular Channel with Constant Wall Heat Flux," *Journal of Heat Transfer, Vol. 106:* 789-796, November 1984.
- Bovalini, R., F. D'Auria, G. M. Galassi, A. Spadoni, & Y. Hassan, 2001, "TMI-1 MSLB Coupled 3-D Neutronics/Thermalhydraulics Analysis: Application of RELAP5-3D and Comparison with Different Codes," 2001 RELAP5 User's Seminar, Sun Valley, ID., September.
- Stewart, W. A., A. T. Pieczynski, & V. Srinivas, 1992, Natural Circulation Experiments for PWR High Pressure Accidents, EPRI Project No. RP2177-5.
- Calis, H. P. A., J. Nijenhuis, B. C. Paikert, F. M. Dautzenberg, & C. M. van den Bleek, "CFD Modeling and Experimental Validation of Pressure Drop and Flow Profile in a Novel Structured Catalytic Reactor Packing," *Chemical Engineering Science*, (56), 1713-1720,

Turbulent Flow in Straight Pipe

- Purpose: Study mesh coupling between Fluent and RELAP5/ATHENA. Determine factors which may detrimentally influence flow
- Assume well-developed flow (left to right); study mesh couplings and influence on velocity profile at Fluent/RELAP5 interface.

Backward-Facing Step: Expanding Flow with Heat Transfer

 Purpose: Study coupling between Fluent—RELAP5/ATHENA and validate Fluent's capability to model flow distribution downstream of step.

Backward-Facing Step (Cont-2)

Backward-Facing Step (Cont-3)

Ratio of local Nu to Nu for fully-developed flow as function of length for various turbulence models in Fluent—compared to Baughn data

Backward-Facing Step (Cont-4)

Typical velocity profiles calculated by Fluent.

Study not yet completed

	4.92e+01			
	4.43e+01			
	3.93e+01			
	3.44e+01			
	2.95e+01			
	2.46e+01			
	1.97e+01			
	1.48e+01			
	9.83e+00			
	4.92e+00			
	0.00e+00			
Pa	Path Lines Colored by Velocity Magnitude (m/s) Aug 08, 2001 FLUENT 5.5 (axi, segregated, rngke)			

Neutronics (RELAP5)-Fluent Coupling

- Perhaps best approach is to use OECD, CSNI-NSC PWR MSLB benchmark.
- Approach not defined.
 Perhaps model only portion of core using Fluent.

Countercurrent Steam-Water Flow Modeled Using Subcooled Water & SF₆

- Purpose: Examine capability of Fluent to model countercurrent flow of two different fluids
- Test performed by Westinghouse to study movement of superheated steam into SG and return of saturated water to core
- SF₆ (sulfur-hexafluoride) used to model superheated steam at high pressure.
- Virtue of these data are the nice temperature distribution measurements in leg, SG plenum, and core

The Idaho National Engineering and Environmental Laboratory

Interim Plans: Use These Data Unless Better (More Applicable) Data Can Be Found

Fluent Calculation of Flow Through Pebble Bed

- Calculation was performed using CFX5
- Ageement with data within 10%.
- Both laminar flow and turbulent flow were modeled.

The Idaho National Engineering and Environmental Laboratory

V&V Packed Bed Data-CFX5 Comparison: Within 10%

Summary

- The Fluent-RELAP5 coupling is underway.
- A preliminary V&V matrix has been constructed.
- A search is underway for better data—but data are not readily available

