

RELAP5-3D Calculations Supporting HTTF Operation

RELAP5 International Users Seminar October 23-24, 2012 Sun Valley, Idaho

Paul D. Bayless Idaho National Laboratory

www.inl.gov

High Temperature Test Facility (HTTF)

- Integral experiment being built at Oregon State University
- Electrically-heated, scaled model of a high temperature gas reactor
 - Reference is the MHTGR (prismatic blocks)
 - Large ceramic block representing core and reflectors
 - ¼ length scale
 - Prototypic coolant inlet (259°C) and outlet (687°C) temperatures
 - Less than scaled power
 - Maximum pressure of ~700 kPa
- Primary focus is on depressurized conduction cooldown transient

High Temperature Test Facility

NGNP Next Go Nuclear

High Temperature Test Facility

Next Generation Nuclear Plant

D

NG

HTTF RELAP5-3D Model Description

- Four systems
 - Primary coolant
 - Secondary coolant
 - Reactor cavity
 - Reactor cavity cooling system (RCCS)
- Central and side reflector regions divided into regions with or without coolant holes
- 2-D (radial/axial) conduction in all vertical heat structures
- Heater block unit cell centered on the coolant channel
- Radial conduction and radiation inside core barrel
- Radiation from core barrel to vessel to RCCS

Reactor Vessel Nodalization

- Multiple flow paths through core
 - Three heated channels
 - Central reflector
 - Side reflector
- Gaps on either side of permanent side reflector not flow-through
- Riser annulus between core barrel and pressure vessel
- No coolant between upper plenum shield and upper head

HTTF Ex-vessel Nodalization

Core Block Design

Next Generation Nuclear Plant

X

HTTF RELAP5-3D Core Region Radial Nodalization

HTTF RELAP5-3D Model Unit Cells

Analyses Supporting Facility Operation

- Initial facility heatup
- Recovery following depressurized conduction cooldown test
 - Reheat
 - Cooldown

Possible Approaches to Initial Heatup

- Heat up with just in-vessel natural circulation
 - Minimizes heat loss
 - High stress on heater rods (low heat transfer rate)
 - Would likely require a very slow heatup
- Heat up with primary coolant flow but dry steam generator
 - Faster, controlled heatup rate possible
 - Reduces heat loss
 - All piping and primary system components at high temperature
 - Introducing cold feedwater to hot tubes
- Initial heatup with dry steam generator, then start steaming
 - Some heat loss
 - When to start feedwater?

Initial Facility Heatup Scoping Calculation

- Only the reactor vessel is modeled
- Entire system starts at ambient temperature
- 1.0 kg/s steady state flow rate established
- Power increased step-wise to maintain a 100°F/h maximum heatup rate in the ceramic
- Reactor vessel inlet temperature set to the lower of the
 - Vessel outlet temperature
 - Full power steady-state inlet temperature

Initial Heatup Heater Rod Power

Initial Heatup Average Temperatures

NEXT Generation Nuclear Plant

Initial Heatup Temperature Increases

NEXT Generation Nuclear Plant

Initial Heatup Calculation Observations

- Core heats up much faster than the reflectors
- Heatup of the permanent side reflector is limiting
 - No adjacent flow for convective heat transfer
 - Must heat up via conduction and radiation
 - Ceramic has low thermal conductivity
- Large thermal inertia suggests that it may be desirable to run experiments in sequence, without cooling down in between

Experiment Recovery Investigations

- Evolutions follow a 48-hr depressurized conduction cooldown (DCC) test
- Cool down facility to ambient temperature
 - 10-s power down
 - 30-s flow increase to ~50% steady state value
 - Assumed 100°C temperature decrease through steam generator
- Reheat for next experiment
 - 30-s flow and pressure increase
 - 60-s constant power followed by 60-s power increase to 2.2 MW
 - Assumed 258.6°C vessel inlet temperature

Cooldown Transient Core Temperatures

Cooldown Transient Reflector Temperatures

Cooldown Transient Peripheral Structure Temperatures

NEXT Generation Nuclear Plant

Reheat Transient Core Temperatures

Reheat Transient Reflector Temperatures

Reheat Transient Peripheral Structure Temperatures

Experiment Recovery Observations

- Permanent side reflector is the limiting structure
- Core region responds quickly
- Most structures are above their steady state temperatures at the end of the DCC transient
- For the reheat evolution, it may be desirable to cool down for a while before turning the power back on
- A complication with the reheat evolution is that the vessel coolant may be above piping design temperatures

Summary

 Code calculations have been performed to support the operation of the HTTF

nho National Laboratory

- Facility heatup and cooldown are long evolutions
- How to accelerate cooldown following a test is an open issue
- Additional studies are needed to optimize experiment sequencing

