RELAP5-3D Developmental Assessment Update

Paul D. Bayless

RELAP5 International Users Seminar October 2012

www.inl.gov

Developmental Assessment Overview

- Is documented as Volume III of the code manual
 - 2.4.2is version completed in December 2011
 - 4.0.3 is version completed in September 2012
- Written from a user's perspective
 - Includes assessment judgments
- Has 53 assessment cases
 - 17 phenomenological problems
 - 27 separate effects experiments
 - 9 integral effects cases (8 experiments)
- Both semi- and nearly-implicit calculations performed for most cases
- Generally uses default code options
- Code manual is expected to be updated with each IRUG version release

Developmental Assessment Comparison Report

- Compares results from current code version to previous version
- Semi-implicit calculations only
- Identifies which figures in the DA report have changed between versions
 - Noticeable differences
 - Significant differences
- Summarizes assessment judgment changes from Volume III
- Expected to be updated with each IRUG version release
- Report is available, though not on the RELAP5-3D home page

Comparison of Versions 4.0.3is and 2.4.2is

- Large number of changes (6 years between releases)
- 19 significant differences in 9 cases
- 194 noticeable differences in 27 cases
- No differences in 23 cases
- Nine assessment judgments changed in nine cases
 - Four improved
 - Five worsened
- Two calculation run failures (water over steam 3-D, LOFT L2-5 3-D)
- Nearly-implicit results more like semi-implicit than before

What is a noticeable difference?

What is a significant difference?

Bubbling Steam Through Liquid (nearly-implicit)

Total System Mass

Version 4.0.3is

Version 2.4.2is

Insufficient

Minimal

Fill-Drain (nearly-implicit)

Bottom Volume Pressure

Excellent

Reasonable

Manometer (no level tracking, nearly-implicit)

Liquid Level

Excellent

Insufficient

Point Kinetics Ramp (small time step)

Fission Power

ORNL THTF Test 3.07.9N

Heater Rod Surface Temperature

Version 2.4.2is

Minimal

Reasonable

Neptunus Test Y05

Dome Pressure

Excellent

Reasonable

LOFT Experiment L3-7

Minimal

Lower Core Fuel Cladding Surface Temperature

LOFT Experiment L2-5, 1-D (nearly-implicit)

Intact Loop Cold Leg Density

Version 2.4.2is

Minimal

Reasonable

LOFT Experiment L2-5, 3-D

Broken Loop Hot Leg Density

Version 2.4.2is

Minimal

Reasonable

Current Findings Version 4.0.3is

Phenomenological Test Cases (1)

Case	Finding
Bubbling steam through liquid	Reasonable/Insufficient
Conduction enclosure steady state	Excellent
Conduction enclosure 1-D transient	Excellent
Conduction enclosure 2-D transient	Excellent
1979 ANS-5.1 decay heat	Excellent
Fill/drain	Excellent
Gravity wave 1-D	Reasonable
Gravity wave 3-D	Reasonable

Phenomenological Test Cases (2)

Case	Finding
Manometer	Excellent
Point kinetics ramp	Excellent
Pryor pressure	Reasonable
Pure radial flow	Excellent
Rigid body rotation	Excellent/Minimal
R-theta symmetric flow	Excellent/Minimal
Water faucet	Excellent
Water over steam 1-D	Reasonable
Water over steam 3-D	Reasonable/Insufficient

Manometer Problem

Liquid Level

Without mixture level tracking

Excellent

Minimal

Minimal (nearly-implicit)

Water Over Steam Problem

Void Fractions in Volumes 4-6 (of 9)

Separate Effects Test Results (1)

Phenomenon	Finding
Critical flow	Excellent (1)
	Reasonable (4)
	Minimal (1)
Two-phase level/void distribution	Excellent (2)
	Reasonable (2)
Critical heat flux	Reasonable (7)
Reflood	Reasonable (2)
CCFL	Reasonable (2)
Pressurizer behavior	Excellent (1)
	Reasonable (1)

Separate Effects Test Results (2)

Phenomenon	Finding
Steam generator steady state	Reasonable (1)
Accumulator response	Excellent (1)
Two-phase pump behavior	Reasonable (1)
Jet pump flow	Reasonable (1)
Film boiling heat transfer coefficient	Reasonable (1)
	Minimal (2)

Critical Flow Problems

Marviken CFT-21 Subcooled and saturated Mass flow rate

Moby-Dick Two-phase, two-component Axial pressure distribution

Reasonable

Minimal

Critical Flow Problems

Mass Flow Rate

Excellent

Excellent

Two-Phase Level and Void Distribution

Axial Void Fraction Profile

Critical Heat Flux

Axial Wall Temperature Distribution

Reasonable/Minimal

Pressurizer Behavior

Steam Dome Pressure

Excellent

Reasonable

LOFT L3-7 1-in. Cold Leg Break

- Most phenomena simulated well
 - Primary coolant system pressure
 - Pressurizer level
 - Temperatures for first 1200 s
 - ECC flow
- Break flow was not well simulated after 400 s
 - Consequent difficulties with cold leg densities, coolant temperatures after 1200 s

LOFT L3-7 SBLOCA

Broken loop cold leg density

ROSA SB-CL-18 5% Cold Leg Break

- Most parameters simulated well
 - Primary and secondary system pressures
 - Loop flow rates
 - Accumulator flow rates
 - Lower core temperatures
- Primary problem was not clearing one loop seal
 - Loop densities not well predicted
 - Core level under predicted
 - Length of core uncovering over predicted

ROSA SB-CL-18 SBLOCA

Loop seal A differential pressure

Semiscale Natural Circulation Tests

- Single-phase predictions excellent
- Two-phase calculations reasonable at high and intermediate powers, minimal at low power
- Reflux condenser mode predicted reasonably at high power and system inventory less than 67%
- Flow rates well predicted with steam generator heat transfer area >50%, over predicted with lower effective surface areas

Semiscale Natural Circulation Tests

LOBI Test A1-04R LBLOCA

- Excellent agreement for
 - Primary system pressure
 - Core differential pressure
 - Heater rod temperatures in lower core in nucleate boiling region
- Reasonable agreement for
 - Loop mass flow
 - Fluid conditions at the accumulator injection location
 - Heater rod temperatures in lower core
 - Heater rod temperatures in upper core early in transient
- Minimal agreement for heater rod temperatures in upper core in after the initial heatup and rewet

LOBI A1-04R LBLOCA

Intact loop pump outlet pressure

Broken loop pump side mass flow rate

LOFT Experiment L2-5 LBLOCA (1-D)

- Acceptable simulations of
 - Primary and secondary system pressures
 - Loop flow rates and broken loop densities
 - Coolant temperatures
 - Fuel rod temperatures
 - ECC flows
 - Bottom-up/top-down quench
- Minimal simulation of intact loop densities (over predicted)

LOFT L2-5 LBLOCA (1-D)

Broken loop cold leg mass flow rate

LOFT Experiment L2-5 LBLOCA (3-D)

- Most results the same as for the 1-D case
- Nearly-implicit calculation had a water property failure that could not be worked around
- Three-dimensional effects more pronounced in the experiment than in the calculation
 - Radial temperature variations showed correct trends
 - Almost no variation in azimuthal temperatures

LOFT L2-5 LBLOCA (3-D)

Measured radial fuel cladding temperatures

Calculated radial fuel cladding temperatures

Notable Deficiency

- Multi-dimensional hydrodynamic component with the nearly-implicit solution scheme
 - Incorrect pressure distributions with two-dimensional flows
 - Water property failures in water over steam and LOFT L2-5 cases
 - Symptoms known, but root cause undetermined
 - Semi-implicit calculations are fine