daho National Laboratory

RELAP5-3D/PHISICS Coupling Advancements

IRUG 2012 meeting October 23-24, 2012 Sun Valley, Idaho

A. Epiney, C. Rabiti, A. Alfonsi, G. Strydom

Outline

Part I

- Code structure
- PHISICS modules (steady state)
- Coupling schemes (steady state)
- NGNP example
- Part II
 - PHISICS modules (time dependent)
 - Coupling schemes (time dependent)
 - Validation activity
 - Future development
 - Release

Outline Part I

- WEARSPHERES/CS coupling adds the following features
- - Spatial/angular mesh refinement Spherical harmonics hodal transport)
 - Unlimited number of energy group

 - MRTAU (depletion)
 - In the future depletion, time dependent,
 - decay heat, adjoint sensitivity analysis Time Driver (in part II)
- We can match computational time with higher accuracy
- Calculation Patterns with RELAP5-3D (part I) We preserve compatibility with past input decks
- **Examples**

What is **PHISICS**?

PHISICS

Parallel and Highly Innovative Simulation INL Code System

- Collection of kernels/modules. Their combined capabilities make PHISICS an attractive code for reactor physics analysis
- Its latter coupling with RELAP5-3D creates a unique bundle where state of the art reactor physics is directly coupled with one of the most used system codes, leading to new attractive features

Software Infrastructure

- Each kernel solves one specific equation set connected to a reactor physics problem
- Each Kernel could be called through its interface leading to different calculation patterns

INSTANT

- INSTANT is the transport/diffusion nodal solver
- Solution is based on the second order formulation of the transport equation projected on the angular spherical harmonics

Capability Summary		
Energy	Unlimited	
Spatial Order	33	
Angular Order	33 (it is also the order of the angular scattering supported)	
MESHES	Cartesian 2/3D, Hex 2/3D, Triangular, Wedges	
Adjoint	Fundamental, Source (no generalized source)	

Using PHISICS Within RELAP5-3D

• Accessible through new keyword "instant"

• Coupling it is not through PVM !!!

Idaho National Laboratory

- There is compatibility with past input decks
- More accurate simulation might require additional inputs → for this you might need to provide additional files

Cross Section Management (MIXER)

- Cross section manipulation is agnostic with respect to the usage of micro, macro, or mixed
- Cross sections are tabulated with respect to an arbitrary number of parameters: fuel temperature, coolant temperature, coolant density, control rod (CR) position, boron concentration, etc.

$$\sigma(P) = \sigma_i + \sum_{j=1}^{dimension} \frac{\sigma_j - \sigma_i}{P_j - P_i} (P - P_i)$$

- Unlimited number of energy groups
- Unlimited number of tabulation points (with cross terms)
- Flexibility to follow a specific isotope separately

MIXER within RELAP5-3D

The new cross section handling capabilities are accessible through...

Tabulated macros only No densities input Depletion module not active

Tabulated macros / micros mixed Isotopic densities input Depletion module active

- Compatible with RELAP5-3D CR model
- Kinetic nodes to TH mapping: as in "Gen" FB Zones and Regions for:
 - Structure temperature
 - Fluid density

- Fluid temperature
- Poison concentration

Depletion (MRTAU)

MRTAU Kernel is a Bateman solver

- Two algorithms are available for the exponential evaluation: CRAM and Taylor
- MRTAU is controlled by a separate input file and can be used with the "phis_mi" option
- Decay heat can be calculated by MRTAU and requested with keyword "MRTAU" on W1 card 30000001

Criticality Search

Given

- Target k_{eff}
- Region

Seeks the density matching the target

- If Macro-isotope → Material movement
- If Micro-Isotope → Number density

RELAP5-3D Coupling

Several coupling schemes are available with RELAP5-3D and they fall in two main classes

- Depletion time evolution
 - TH
 - Neutronics steady state
 - Depletion
 - Mixing
- Time dependent
 - TH
 - Neutronics time dependent
 - Depletion
 - Mixing

Depletion Time Evolution

MHTGR

- NGNP supports the PHISICS/RELAP5-3D coupling for the MHTGR benchmark
- Features needed by the benchmark not supported by NESTLE/RELAP5-3D
 - High order cross section behavior (two point linear dependency of cross-section not sufficient to capture feedback)
 - Twenty-six energy groups needed
 - Triangular mesh for CR location
- Benchmark characteristics (neutronics)
 - 4000 neutronic nodes

daho National Laboratory

- Twenty-six energy groups, ~170 tabulation points, anisotropic scattering, 230 material definitions
- Fuel and reflector macroscopic cross sections, Xe and I microscopic absorption

MHTGR RELAP5-3D models

Fuel element

MHTGR RELAP5-3D models (ring-wise)

Coolant hole

Helium gaps

Unit cell

Conduction/radiation

- One unit cell (heat-structure) per ring
- One bypass pipe per ring
- Rings connected by conduction/radiation enclosures
- "Ring-wise" feedbacks for PHISICS

Idaho National Laboratory

MHTGR RELAP5-3D models (1/6 block, 1/3 core)

Pushing RELAP5-3D to its limits

- One unit cell (heat-structure) per 1/6 block
- One bypass pipe per block face
- "Intrablock" conduction between 1/6 blocks
- Radiation between block faces
- Refined feedback for PHISICS
 - Particle model for Doppler feedback
 One particle per 1/6 block and axial level
- 800+ material definitions to accommodate fluency and burn-up dependence
- 120+ bypass pipes, 130+ cooling pipes (14 axial nodes)
- 3400+ HS, 1220 particle HS
- 7000+ surfaces in radiation/conduction enclosures
- 1200+ neutronic feedback zones
- 220 decay heat tables
 ... it's a huge bookkeeping exercise

NGNP MHTGR results

- full XS library, 26 groups
- block-wise kinetics
- detailed 1/6 block TH
- steady state with *Xe* equilibrium

←Converged flux for group 18

	PHISICS/RELAP5- 3D
Keff	1.04859
converged	

NGNP MHTGR results

Xenon build-up

daho National Laboratory

RELAP5-3D/PHISICS coupling advancements II

IRUG 2012 meeting October 23-24, 2012 Sun Valley, Idaho

C. Rabiti, A. Epiney, A. Alfonsi, G. Strydom

Outline

- Time driver module
- Calculation Patterns with RELAP5-3D (part II)
 - Time dependent
- Ongoing work
 - PWR TH/neutronics/burn-up benchmark
 - Assembly shuffling
 - Perturbation Analysis
- Code licensing
- Conclusions

Time Dependent Theory

 A second order backward Euler scheme is re-casted as a steady state source problem (always stable)

$$\begin{cases} \vec{\Omega} \cdot \vec{\nabla} \, \psi^{-,i+1} + \tilde{\Sigma}_T \psi^{+,i+1} = H^+ \psi^{+,i+1} + \tilde{S}^{+,i+1} + \frac{1}{k} F \psi^{+,i+1} \\ \vec{\Omega} \cdot \vec{\nabla} \, \psi^{+,i+1} + \tilde{\Sigma}_T \psi^{-,i+1} = H^- \psi^{-,i+1} + \tilde{S}^{-,i+1} \end{cases} \begin{cases} \tilde{S}^{\pm,i+1} = S^{\pm,i+1} + \frac{1}{s\Delta t} \psi^{\pm,i} \\ \tilde{\Sigma}_T = \frac{1}{s\Delta t} + \Sigma_T \psi^{-,i+1} \\ \vec{\Sigma}_T = \frac{1}{s\Delta t} + \Sigma_T \psi^{-,i+1} \end{cases}$$

 Computation of the delayed neutron source is obtained by operator split and then direct integration

$$\begin{split} N_f^i &= N_f^{i-1} e^{-\lambda_f \Delta t_i} + \frac{1 - e^{-\lambda_f \Delta t_i}}{\lambda_f} \sum_{g=1}^G \beta_{f,g} v \Sigma_{\mathrm{F},\mathrm{g}} \Phi_{\mathrm{g}}^{\mathrm{i}-1} \quad S_{d,g}^{i+1} = \sum_{f=1}^{nf} \chi_{f,g} \lambda_f N_f^i \\ S_{Tot}^{i+1} &= \tilde{S}^{\pm,i+1} + S_d^{i+1} \end{split}$$

- "Pre-burnig" possible in one stop calculation, i.e. before the time dependent loop starts, MRTAU can pre-burn the core with the initial temperature distribution to a desired burn-up level
- Full restart capabilities for PHISICS/RELAP5-3D are implemented, i.e. a "Depletion Time Evolution" calculation can be performed before a transient is restarted

PWR Description

- Full core model
- 17x17 radial nodes
- 13 axial levels
- 11 Materials
- 36 TH feedback zones
- 2 Energy groups
- 6 families delayed neutrons

CR out

CR in

Time Dependent: CR movement

- Stability satisfied in the initial phase of the simulation
- Peak in reasonable agreement with REALP5-3D NESTLE
- Convergence studies
 might improve agreement
- After CR reinsertion power is re-stabilized at initial value

- 300s total transient time
- CR movement: withdrawn from 100s to 110s, reinserted from 115s to 125s

Shuffling scheme

(Allan Mabe Master Thesis)

The composition shuffling module is able to do

- 1) arbitrary in-core movements
- 2) grouped in-core movement (for assemblies)
- 3) group rotation (for assemblies)
- 4) grouped/individual core to pool movements
- 5) fresh fuel to core movements
- 6) Grouped/individual
 movements out of the core (trash)

The Pool Approach

Moving toward an integrate reactor analysis tool it is important...

- Being capable to trace fuel inside and outside the core since things happens also outside
- We have the capability to perform isotopic changes for stand alone depletions but it is not yet integrated with RELAP5-3D
- A more detailed isotopic heat production would allow for dealing with pool heating problems

Ongoing: PWR depletion/TH benchmark

(Francesco Lodi Master Thesis)

- Full core coupled thermalhydraulics/depletion benchmark
- Real plant data available
- 15x15 assemblies, 32 axial levels
- 17 different assembly types
 - 3 different enrichments
 - burnable absorber
 - control rods
- Benchmark goals:
 - First two cycles in normal operation
 - Assembly shuffling between cycles

PWR depletion/TH benchmark

Cross section library generated with HELIOS

- ~180 isotopes
- 69 different materials
 - Assembly types, reflector, spacers, etc..
- 4 tabulation dimensions (4 points each)
 - Burn-up
 - Fuel temperature
 - Moderator density
 - Boron concentration
- All cross points considered
 - 256 tabulation points

daho National Laboratory

PWR depletion/TH benchmark

Zero power figure of merits

- Critical boron concentration at different temperatures
- Reactivity variations for temperature changes
- Boron and control rod worth
- U235 fission rate

PWR depletion/TH benchmark

- 3x3 computational nodes per assembly ~60'000 nodes
- Node-wise depletion
- Two cycle goal (24 GWd/HMton)
 - compare fission chamber response
 - other hot full power figures to be defined

Perturbation Analysis

(Christopher Kennedy PhD)

- Reactor Design has been relaying on sensitivity coefficient to
 - Short the design process
 - Perform safety evaluation
 - Evaluate uncertainty

daho National Laboratory

 ∂FoM ∂p

 Neutronics is a easy problem (linear) therefore adjoint analysis was possible

Perturbation Analysis in PHISICS

- Since incipit INSTANT had the capability to perform critical adjoint calculation
- Critical adjoint could be used only for sensitivity for K_{eff}
 - Temperature coefficients
 - Void coefficient
- For more complex figure of merits it is needed the generalized perturbation theory (GPT)
 - All type of reaction rates and their linear combination

GPT Free Implementation

- In cooperation with NCSU INL has developed a GPT free approach
- In short the K_{eff} sensitivity is seen as a linear combination of the sensitivity of interest
- Sensitivity of interest are extracted from several sampling of the sensitivity of the K_{eff}
- Advantages:
 - No need to implement GPT
 - Number of sampling could be less than the number of sensitivity parameters

GPT Free Schema

Idaho National Laboratory

RELAP5-3D + PHISICS + GPT free

- The GPT free module is coming along as we speak so not yet integrated...
- The reason why we are looking forward for this implementation:
 - Sensitivity coefficient at every possible stage of the reactor simulation in terms of
 - Depletion
 - TH field

More Ongoing Developments

- What has not been mentioned so far:
 - Inline cross section homogenization with HELIOS
 - Monte Carlo coupling of the depletion module

How to get RELAP5-3D with PHISICS

- Coupling available in RELAP5-3D v4.0.3
- University
 - Executable for free but unsupported (only Linux version) after a regular RELAP5-3D license
 - Source code available (RELAP5-3D as a precompiled library)
 - Access to INL repository and capability to run locally
 - **RELAP5-3D** executable license required
 - INL will retain copyrights of the developments
 - Development proposal required
- Commercial use TBD but available

Conclusions

- More additions have been performed toward the generation of a reactor analysis tool with TH and neutronics at the state of the art
- MHTGR benchmark is going smoothly assessing a good level of maturity of the code
- PWR coupled depletion is a challenging benchmark that we expect to accomplish without major road stoppers
- Code capabilities are growing and more is in the pipeline

