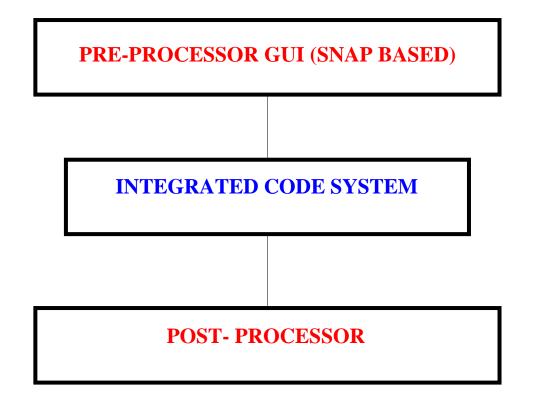


INFORMATION SYSTEMS LABORATORIES, INC. 11140 Rockville Pike, Suite 500

Rockville, MD 20852 (301) 468-6425 Fax: (301) 468-0883


August 27-29, 2003

Design Objectives

- Provide a wrap-around common engineering interface to multiple analysis codes.
- Provide a graphical view of the flow, heat and logic model network.
- Share design information from a common, controlled database.
- Provide user-friendly tools and wizards and perform on-the-fly renodalization.
- Improve consistency and quality assurance.

Wrap-around Common Engineering Environment

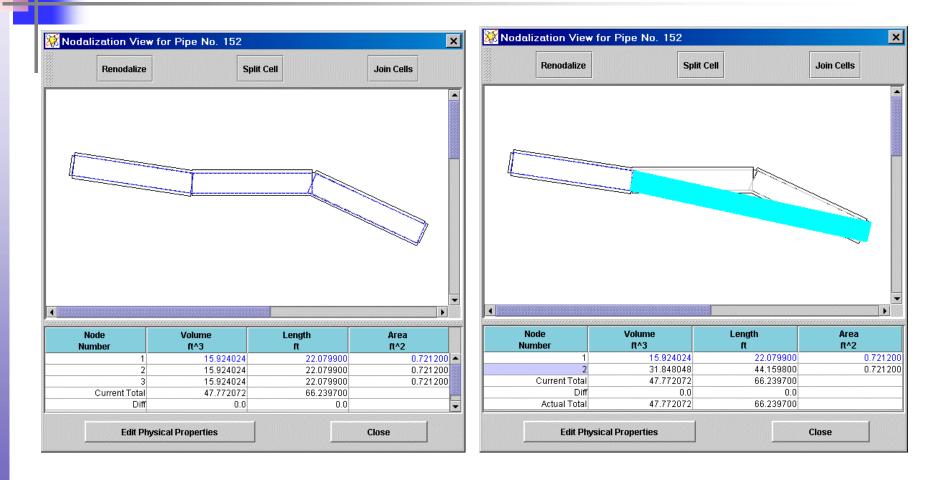
Background

- Initial funding from the NRC to support
 - RELAP5 Mod3.3
 - TRACE (formerly TRAC-M)
- Included hydraulics, heat structures, control systems and point kinetics
- Cross-platform design
 - first written in C++ with toolkits
 - later rewritten using Java1.2
 - now Java1.4 compliant

Extensions for RELAP5-3D

- Modeling Options
 - development options
 - print control
- Multi-dimension Component
 - based on work done for the TRACE vessel
 - Cylindrical and Cartesian geometries
- Pressurizer Component
- Parametric variable names

Nodal Kinetics

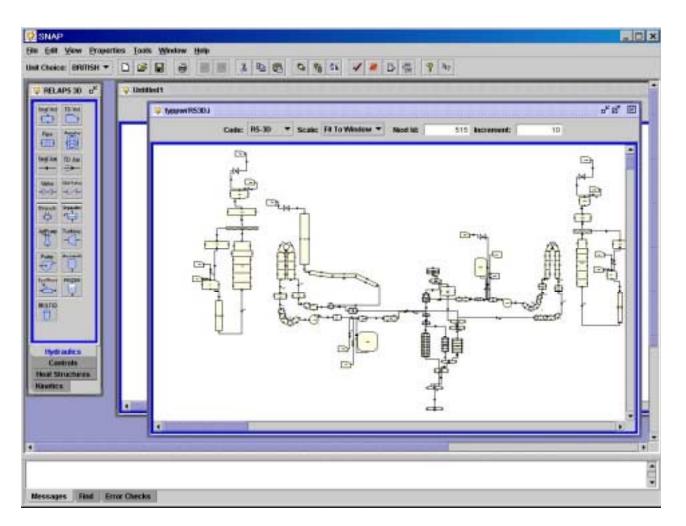

- Cartesian and hexagonal geometries
- Zone and composition assignments are displayed using mesh tables.
- Supported Feedback types
 - RAMONA
 - HWR
 - GEN

Physical data is entered which can then be divided into the calculation mesh.

- Containers
 - Volumes
 - Heat Slabs
 - Control Blocks
- Links
 - junctions
 - logic flow

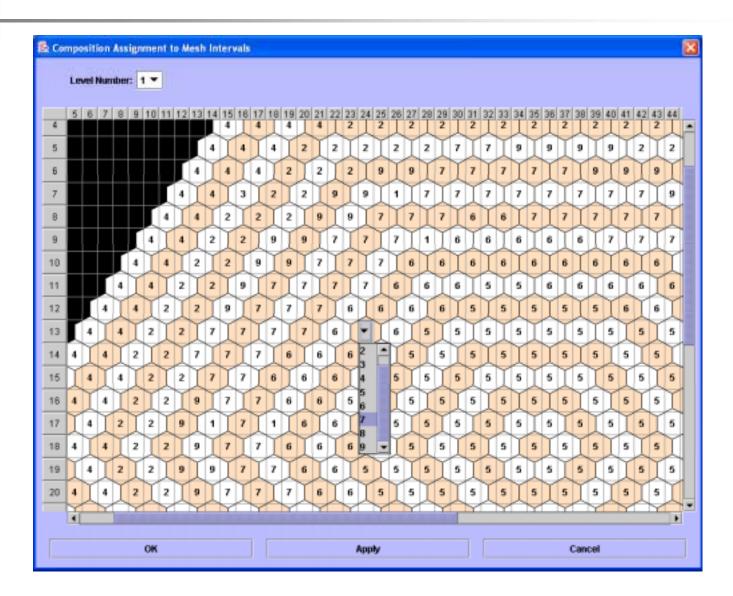
- Geometry based on "metadata" representation
 - first extract the physical data
 - then create new code specific objects
- Model options are based (as much as possible) on physical properties and user preferences. Remainder will be supplied through user interaction.

Renodalization


Renodalization Cont.

	oe No. 152		2
Renodalize	Spl	it Cell	Join Cells
Node	Volume	Length	Area
Node Number	Volume ft^3	Length ft	Area ft*2
Node Number 1	Volume ft^3 15.924024	Length ft 22.079900	Area ft^2 0.7212
Node Number 1 2	Volume ft^3 15.924024 6.369610	Length ft 22.079900 8.831960	Area ft^2 0.7212 0.7212
Node Number 1	Volume ft^3 15.924024 6.369610 6.369610	Length ft 22.079900 8.831960 8.831960 8.831960	Area ft^2 0.7212 0.7212 0.7212 0.7212
Node Number 1 2 3 4 5	Volume ft^3 15.924024 6.369610 6.369610 6.369610 6.369610	Length ft 22.079900 8.831960 8.831960 8.831960 8.831960 8.831960	Area ft^2 0.7212 0.7212 0.7212 0.7212 0.7212 0.7212
Node Number 1 2 3 4 4 5 5	Volume ft^3 15.924024 6.369610 6.369610 6.369610 6.369610 6.369610	Length ft 22.079900 8.831960 8.831960 8.831960 8.831960 8.831960 8.831960	Area ft^2 0.7212 0.7212 0.7212 0.7212 0.7212 0.7212
Node Number 1 2 3 3 4 5 6 Current Total	Volume ft^3 15.924024 6.369610 6.369610 6.369610 6.369610 6.369610 47.772072	Length ft 22.079900 8.831960 8.831960 8.831960 8.831960 8.831960 8.831960 66.239700	Area ft^2 0.7212 0.7212 0.7212 0.7212 0.7212 0.7212
Node Number 1 2 3 4 4 5 5	Volume ft^3 15.924024 6.369610 6.369610 6.369610 6.369610 6.369610	Length ft 22.079900 8.831960 8.831960 8.831960 8.831960 8.831960 8.831960	Area

Model Editor Main Window (typpwr model shown)



Multi-dimension Component

		Flow Type	Velocity	• Z	Face	Hyd.Diam.	Area	Water V_	Claam	
		Interval	Interval	interval	race	m	Factor	m/s	m/s	
		1	1	1	2	0.0	1.000000	0.0	0.0	٠
		1	1	1	- 4	0.0	1.000000	0.0	0.0	
		1	1	1	6	0.0	1.000000	0.0	0.0	
		1	1	~			1.000000			1000
		1	1	-			1.000000			1000
		1	1	-			1.000000			1000
2		1	1	-			1.000000			1222
		1	1	~			1.000000			1000
		1	2		2		1.000000			1000
54P		1	2		4		1.000000			1000
		1	2		6		1.000000			1202
		1	2		2		1.000000			1000
		1	2				1.000000			1000
		1	2				1.000000			1000
		1	2		~		1.000000			1000
		1	2		4		1.000000			
		1	3	-	6		1.000000			
		1	3				1.000000			
		1	3				1.000000			
		1	3		2		1.000000			
		2		-	2		1.000000			
		2	1	1	4		1.000000			
		Axial Noda	lization	X Interval I	Nodalizatio	n Yinte	rval Nodal	ization	Fluid Cond	itio
1.00	Rotate	Flow Condi	tions V	folume Frict	tion Jun	ction Cont				
Z	.	Edit Physical Properties								

Nodal Kinetics

Work In Progress

- Component Grouping
 - simplify the display be allowing sets of components to be grouped as a composite
 does not change any physical data
- Intelligent Renodalization Wizard
 - Current code can only divide 1 or more cells in a pipe into equal area cells.
 - New procedure acts on a set of connected components or the whole model.
 - Uses experience-based rules.

Conclusion

- Flexible and extensible architecture
- Provides visual representation of complex input models
- Automate repetitive tasks
 - Consistent with engineering guidelines
 - Decrease user effects